Advertisement

Hydrothermal Synthesis of Metal–Organic Coordination Polymers Constructed from Asymmetric Semi-rigid V-shaped Dicarboxylate and Nitrogen-Contained Mixed Ligands

  • Chunyan Kong
Communication

Abstract

Three new coordination polymers, [Ni(2,4′-oba)(1,10-phen)] n (1), {[Ni (2,4′-Hoba)2(4,4′-bipy)(H2O)2]·2H2O} n (2) and [Zn(2,4′-oba) (4,4′-bipy)] n (3) (2,4′-H2oba = 2-(4-carboxyphenoxy)benzoic acid, 1,10- phen = 1,10-phenanthroline, and 4,4′-bipy = 4,4′-bipyridine) have been obtained by hydrothermal synthesis. The framework structures of these polymeric complexes have been determined by single-crystal X-ray diffraction studies. Complex 1 exhibits double-helical chains formed by ππ stacking interactions from the phenyl rings of the 1,10-phen ligands. Complex 2 forms a two-dimensional supramolecular architecture directed by hydrogen bonding. Complex 3 exhibits a three-dimensional structure; Schläfli symbol of {44·610·8}. The luminescent property of compound 3 is discussed.

Keywords

Hydrothermal syntheses Crystal structure Fluorescence Ni and Zn complexes 

References

  1. 1.
    C.J. Doonan, D.J. Tranchemontagne, T.G. Glover, J.R. Hunt, O.M. Yahi, Nat. Chem. 2, 235 (2010)CrossRefGoogle Scholar
  2. 2.
    S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, J. Am. Chem. Soc. 129, 14176 (2007)CrossRefGoogle Scholar
  3. 3.
    L. Pan, H. Liu, X. Lei, X. Huang, D. Olson, N. Turro, J. Li, Angew. Chem. Int. Ed. 42, 542 (2003)CrossRefGoogle Scholar
  4. 4.
    B. Moulton, M.J. Zaworotko, Chem. Rev. 101, 1629 (2001)CrossRefGoogle Scholar
  5. 5.
    O.R. Evans, W. Lin, Acc. Chem. Res. 35, 511 (2002)CrossRefGoogle Scholar
  6. 6.
    O. Kahn, Acc. Chem. Res. 33, 647 (2000)CrossRefGoogle Scholar
  7. 7.
    J. Li, W. Bi, W. Ki, X. Huang, S. Reddy, J. Am. Chem. Soc. 129, 14140 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004)CrossRefGoogle Scholar
  9. 9.
    S.R. Batten, R. Robson, Angew. Chem. Int. Ed. 37, 1460 (1998)CrossRefGoogle Scholar
  10. 10.
    M. Eddaoudi, D.B. Moler, H. Li, B. Chen, T.M. Reineke, M.O. Keefee, O.M. Yaghi, Acc. Chem. Res. 34, 319 (2001)CrossRefGoogle Scholar
  11. 11.
    W.L. Liu, L.H. Ye, X.F. Liu, L.M. Yuan, J.X. Jiang, C.G. Yan, Cryst. Eng. Comm. 10, 1395 (2008)Google Scholar
  12. 12.
    D.X. Xue, J.B. Lin, J.P. Zhang, X.M. Chen, Cryst. Eng. Comm. 11, 183 (2009)Google Scholar
  13. 13.
    C.J. Doonan, W. Morris, H. Furukawa, O.M. Yaghi, J. Am. Chem. Soc. 131, 9492 (2009)CrossRefGoogle Scholar
  14. 14.
    X.L. Wang, C. Qin, E.B. Wang, Y.G. Li, Z.M. Su, L. Xu, L. Carlucci, Angew. Chem. Int. Ed. 44, 5824 (2005)CrossRefGoogle Scholar
  15. 15.
    X.Y. Cao, Z.J. Li, J. Zhang, Y.Y. Qin, J.K. Cheng, Y.G. Yao, Cryst. Eng. Comm. 10, 1345 (2008)Google Scholar
  16. 16.
    F. Guo, Z. Anorg. Allg. Chem. 636, 857 (2010)CrossRefGoogle Scholar
  17. 17.
    G.P. Yang, Y.Y. Wang, W.H. Zhang, A.Y. Fu, R.T. Liu, E. Lermontova, Q.Z. Shi, Cryst. Eng. Comm. 12, 1509 (2010)Google Scholar
  18. 18.
    F. Guo, X.L. Zhang, B.Y. Zhu, J.C. Qiu, J. Inorg. Organomet. Polym. 20, 38 (2010)CrossRefGoogle Scholar
  19. 19.
    C.S. Liu, J.J. Wang, Z. Chang, L.F. Yan, X.H. Bu, Cryst. Eng. Comm. 12, 1833 (2010)Google Scholar
  20. 20.
    F. Guo, J.K. Xu, X.L. Zhang, B.Y. Zhu, Inorg. Chim. Acta (2010). doi: 10.1016/j.ica. 2010.05.035
  21. 21.
    L.P. Zhang, J.F. Ma, J. Yang, Y.Y. Pang, J.C. Ma, Inorg. Chem. 49, 1535 (2010)CrossRefGoogle Scholar
  22. 22.
    F. Guo, B.Y. Zhu, X.L. Zhang, Y.L. Song, P. Wu, J. Coord. Chem. 63, 1130 (2010)CrossRefGoogle Scholar
  23. 23.
    H.L. Wang, D.P. Zhang, D.F. Sun, Y.T. Chen, L.F. Zhang, L.J. Tian, J.Z. Jiang, Z.H. Ni, Cryst. Growth Des. 9, 5273 (2009)CrossRefGoogle Scholar
  24. 24.
    J.K. Sun, Q.X. Yao, Z.F. Ju, J. Zhang, Cryst. Eng. Comm. 12, 1709 (2010)Google Scholar
  25. 25.
    H.L. Wang, D.P. Zhang, D.F. Sun, Y.T. Chen, K. Wang, Z.H. Ni, L.J. Tian, J.Z. Jiang, Cryst. Eng. Comm. 12, 1096 (2010)Google Scholar
  26. 26.
    A.X.S. Bruker, SAINT Software Reference Manual (Madison, Winconsin, 1998)Google Scholar
  27. 27.
    G.M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures (University of Göttingen, Germany, 1997)Google Scholar
  28. 28.
    J. Yang, Q. Yue, G.D. Li, J.J. Cao, H.G. Li, J.S. Chen, Inorg. Chem. 45, 2857 (2006)CrossRefGoogle Scholar
  29. 29.
    A.D. Wang, J.C. Qiu, F. Guo, X.L. Zhang, Y.L. Liu, J. Inorg. Organomet. Polym. 20, 293 (2010)CrossRefGoogle Scholar
  30. 30.
    X.J. Zhang, L.P. Jin, S. Gao, Inorg. Chem. 43, 1600 (2004)CrossRefGoogle Scholar
  31. 31.
    T.L. Hu, R.Q. Zou, J.R. Li, X.-H. Bu, Dalton Trans. 10, 1302 (2008)CrossRefGoogle Scholar
  32. 32.
    L.L. Wen, D.B. Dang, C.Y. Duan, Y.Z. Li, Z.F. Tian, Q.J. Meng, Inorg. Chem. 44, 7161 (2005)CrossRefGoogle Scholar
  33. 33.
    G.C. Liu, Y.Q. Chen, X.L. Wang, B.K. Chen, H.Y. Lin, J. Solid State Chem. 182, 566 (2009)CrossRefGoogle Scholar
  34. 34.
    A.W. Adamson, P.D. Fleischauer (eds.), Concepts of Inorganic Photochemistry (Wiley, New York, 1975)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryDe Zhou UniversityShandongChina

Personalised recommendations