Advertisement

Synthesis and Characterization of AgBr–Silk Nanocomposite Under Ultrasound Irradiation

  • Amir Reza Abbasi
  • Ali Morsali
Article

Abstract

The growth of silver bromide nanoparticles on silk yarn was achieved by sequential dipping in alternating bath of potassium bromide and silver nitrate under ultrasound irradiation. The effect of concentration, power of ultrasound irradiation and the numerous of sequential dipping steps in growth of the AgBr nanoparticles on silk yarn were studied. The samples were characterized with powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and Inductive Coupled Plasma (ICP). The lower average size and the higher crowded AgBr nanoparticles upon silk yarn are the result of using ultrasound irradiation.

Keywords

Nano-particle Silk Ultrasound irradiation Silver bromide 

Notes

Acknowledgments

Support of this investigation by Tarbiat Modares University and Iran Water Resources Management Co. are gratefully acknowledged.

Supplementary material

10904_2010_9408_MOESM1_ESM.doc (242 kb)
Supplementary material 1 (DOC 241 kb)

References

  1. 1.
    W. Hu, S. Chen, X. Li, S. Shi, W. Shen, X. Zhang, H. Wang, In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater. Sci. Eng. C 29, 1216–1219 (2009)CrossRefGoogle Scholar
  2. 2.
    H. Tan, W.Y. Fan, Laser-based synthesis of core Ag-shell AgI nanoparticles. Chem. Phys. Lett. 406, 289–293 (2005)CrossRefGoogle Scholar
  3. 3.
    H.J. Lee, S.Y. Yeo, S.H. Jeong, Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 38, 2199–2204 (2003)CrossRefGoogle Scholar
  4. 4.
    I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschuetz-Sigl, A. Hasmann, G. Guebitz, A. Gedanken, CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf. Coat. Technol. 204, 54–57 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Bai, Y. Li, M. Li, S. Wang, C. Zhang, Q. Yang, Electrospinning method for the preparation of silver chloride nanoparticles in PVP nanofiber. Appl. Surf. Sci. 254, 4520–4523 (2008)CrossRefGoogle Scholar
  6. 6.
    J.P. Tiwari, R.K. Rao, Template synthesized high conducting silver chloride nanoplates. Solid State Ion. 179, 299–304 (2008)CrossRefGoogle Scholar
  7. 7.
    M.M. Husein, E. Rodil, J.H. Vera, A novel method for the preparation of silver chloride nanoparticles starting from their solid powder using microemulsions. J. Colloid Interface Sci. 288, 457–467 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Husein, E. Rodil, J.H. Vera, Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion. J. Colloid Interface Sci. 273, 426–434 (2004)CrossRefGoogle Scholar
  9. 9.
    M.G. Spirin, S.B. Brichkin, V.F. Razumov, Growth kinetics for AgI nanoparticles in AOT reverse micelles: effect of molecular length of hydrocarbon solvents. J. Colloid Interface Sci. 326, 117–120 (2008)CrossRefGoogle Scholar
  10. 10.
    L. Zhao, Y. Wang, Z. Chen, Y. Zou, Preparation, characterization, and optical properties of host–guest nanocomposite material SBA-15/AgI. J. Phys. B 403, 1775–1780 (2008)CrossRefGoogle Scholar
  11. 11.
    I.L. Validzic, V. Jokanovic, D.P. Uskokovi, J.M. Nedeljkovi, Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis. Mater. Chem. Phys. 107, 28–32 (2008)CrossRefGoogle Scholar
  12. 12.
    N. Perkas, Y. Wang, Y. Koltypin, A. Gedanken, S. Chandrasekaran, Mesoporous iron–titania catalyst for cyclohexane oxidation. Chem. Commun. 988–989 (2001)Google Scholar
  13. 13.
    M.V. Landau, L. Vradman, M. Herskowitz, Y. Koltypin, A. Gedanken, Ultrasonically controlled deposition–precipitation: Co–Mo HDS catalysts deposited on wide-pore MCM material. J. Catal. 201, 22–36 (2001)CrossRefGoogle Scholar
  14. 14.
    K.S. Suslick, Sonochemistry. Science 247, 1439–1445 (1990)CrossRefGoogle Scholar
  15. 15.
    K.H. Kim, K.B. Kim, Ultrasound assisted synthesis of nano-sized lithium cobalt oxide. Ultrason. Sonochem. 15, 1019–1025 (2008)CrossRefGoogle Scholar
  16. 16.
    I.L. Validzic, I.A. Jankovic, M. Mitric, N. Bibic, J.M. Nedeljkovic, Growth and quantum confinement in AgI nanowires. Mater. Lett. 61, 3522–3525 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Potiyaraj, P. Kumlangdudsana, S.T. Dubas, Synthesis of silver chloride nanocrystal on silk fibers. Mater. Lett. 61, 2464–2466 (2007)CrossRefGoogle Scholar
  18. 18.
    M.A. Alavi, A. Morsali, Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason. Sonochem. 17, 441–446 (2010)CrossRefGoogle Scholar
  19. 19.
    K.S. Suslick, D.A. Hammerton, R.E. Cline, Sonochemical hot spot. J. Am. Chem. Soc. 108, 5641–5642 (1986)CrossRefGoogle Scholar
  20. 20.
    M.W. Grinstaff, A.A. Cichowlas, S.B. Choe, K.S. Suslick, Effect of cavitation conditions on amorphous metal synthesis. Ultrasonics 30, 168–172 (1992)CrossRefGoogle Scholar
  21. 21.
    A. Morsali, H.H. Monfared, A. Morsali, Synthesis and characterization of Mn3O4 nanoparticles via thermal decomposition of a new synthesized hydrogen bonded polymer. J. Mol. Struct. 938, 10–14 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Yang, C. Lin, Zh. Wang, J. Lin, In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorg. Chem. 45, 8973–8979 (2006)CrossRefGoogle Scholar
  23. 23.
    A. Askarinejad, A. Morsali, Synthesis and characterization of mercury oxide unusual nanostructures by ultrasonic method. Chem. Eng. J. 153, 183–186 (2009)CrossRefGoogle Scholar
  24. 24.
    M.A. Alavi, A. Morsali, Syntheses of BaCO3 nanostructures by ultrasonic method. Ultrason. Sonochem. 15, 833–838 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesTarbiat Modares UniversityTehranIslamic Republic of Iran

Personalised recommendations