Advertisement

Recent Progress in the Synthesis and Applications of Some Ferrocene Derivatives and Ferrocene-Based Polymers

  • Wael A. Amer
  • Li Wang
  • Abid M. Amin
  • Liang Ma
  • Haojie Yu
Review Paper

Abstract

In the past decades, a lot of ferrocene (Fc) derivatives have been synthesized and used in many different applications. In addition, Fc-containing polymers have emerged, as an important class of the metal-containing polymers, with unique electrical, magnetic and optical properties and thus much considerable attention has been paid for the application of these polymer systems. These Fc-containing polymers have many different applications such as amperometric biosensors, immunosensors for proteins, DNA and hepatitis B surface antigen (HBsAg) and carbon monoxide sensors and also they can be used for the fabrication of optical logic gates. This paper reviews the recent progress in the synthetic methodologies, functionalization and the applications of Fc-based polymers as well as some Fc derivatives.

Keywords

Ferrocene Ferrocene-based polymers Synthesis Application 

Notes

Acknowledgment

This work was supported by the National Science Foundation of China (20772108, 20672097 and 20802067).

References

  1. 1.
    R.B. Woodward, M. Rosenblum, M.C. Whiting, J. Am. Chem. Soc. 74, 3458 (1952)CrossRefGoogle Scholar
  2. 2.
    P.L. Pauson, Q. Rev. Chem. Soc. 9, 391 (1955)CrossRefGoogle Scholar
  3. 3.
    A.N. Nesmeyanov, N.S. Kochetkova, Russ. Chem. Rev. 43, 710 (1974)CrossRefGoogle Scholar
  4. 4.
    N.S. Kochetkova, Yu.K. Krynkina, Russ. Chem. Rev. 47, 486 (1978)CrossRefGoogle Scholar
  5. 5.
    M.F.R. Fouda, M.M. Abd-Elzaher, R.A. Abdelsamaia, A.A. Labib, Appl. Organometal. Chem. 21, 613 (2007)CrossRefGoogle Scholar
  6. 6.
    K.E. Dombrowski, W. Baldwin, J.E. Sheats, J. Organomet. Chem. 302, 281 (1986)CrossRefGoogle Scholar
  7. 7.
    D.R. van Staveren, N. Metzler-Nolte, Chem. Rev. 104, 5931 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Wang, Electroanalysis 13, 983 (2001)CrossRefGoogle Scholar
  9. 9.
    I. Willner, E. Katz, Angew. Chem. Int. Ed. 39, 1180 (2000)CrossRefGoogle Scholar
  10. 10.
    T.S. Zatsepin, S.Y. Andreev, T. Hianik, T.S. Oretskaya, Russ. Chem. Rev. 72, 537 (2003)CrossRefGoogle Scholar
  11. 11.
    G. Masson, A.J. Lough, I. Manners, Macromolecules 41, 539 (2008)CrossRefGoogle Scholar
  12. 12.
    M.O. Wolf, Adv. Mater. 13, 545 (2001)CrossRefGoogle Scholar
  13. 13.
    M.A. Buretea, T.D. Tilley, Organometallics 16, 1507 (1997)CrossRefGoogle Scholar
  14. 14.
    R. Knapp, U. Velten, M. Rehahn, Polymer 39, 5827 (1998)CrossRefGoogle Scholar
  15. 15.
    P. Nguyen, P. Gómez-Elipe, I. Manners, Chem. Rev. 99, 1515 (1999)CrossRefGoogle Scholar
  16. 16.
    M.O. Wolf, J. Inorg. Organomet. Polym. Mater. 16, 189 (2006)CrossRefGoogle Scholar
  17. 17.
    R.D.A. Hudson, J. Organomet. Chem. 637–639, 47 (2001)CrossRefGoogle Scholar
  18. 18.
    C.U. Pittman Jr., B. Surynarayanan, J. Am. Chem. Soc. 96, 7916 (1974)CrossRefGoogle Scholar
  19. 19.
    T. Michinobu, H. Kumazawa, K. Noguchi, K. Shigehara, Macromolecules 42, 5903 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Kivala, F. Diederich, Acc. Chem. Res. 42, 235 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Xu, Y. Tian, R. Peng, Y. Xian, Q. Ran, L. Jin, Electrochem. Commun. 11, 1972 (2009)CrossRefGoogle Scholar
  22. 22.
    Q. Zhang, L. Jiao, C. Shan, G. Yang, X. Xu, L. Niu, Synth. Met. 159, 1422 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Scheirs, T.E. Long (eds.), Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters (Wiley, Chichester, 2003)Google Scholar
  24. 24.
    Y. Gao, J.M. Shreeve, J. Inorg. Organomet. Polym. Mater. 17, 19 (2007). and references thereinCrossRefGoogle Scholar
  25. 25.
    A.S. Abd-El-Aziz, E.K. Todd, R.M. Okasha, T.E. Wood, Macromol. Rapid Commun. 23, 743 (2002)CrossRefGoogle Scholar
  26. 26.
    M.M. Abd-Alla, M.F. El-Zohry, K.I. Aly, M.M. Abd-El-Wahab, J. Appl. Polym. Sci. 47, 323 (1993)CrossRefGoogle Scholar
  27. 27.
    G. Wilbert, R. Zentel, Macromol. Chem. Phys. 197, 3259 (1996)CrossRefGoogle Scholar
  28. 28.
    G. Wilbert, S. Traud, R. Zentel, Macromol. Chem. Phys. 198, 3769 (1997)CrossRefGoogle Scholar
  29. 29.
    C.S. Combs Jr., C.I. Ashmore, U.S. Patent No. 3, 898, 254 (1975)Google Scholar
  30. 30.
    C.S. Combs Jr., C.I. Ashmore, U.S. Patent No. 3, 886, 007 (1975)Google Scholar
  31. 31.
    C.J. McAdam, S.C. Moratti, B.H. Robinson, J. Simpson, J. Organomet. Chem. 693, 2715 (2008)CrossRefGoogle Scholar
  32. 32.
    J.S. Moore, S.I. Stupp, Macromolecules 23, 65 (1990)CrossRefGoogle Scholar
  33. 33.
    C.J. McAdam, A. Nafady, A.M. Bond, S.C. Moratti, J. Simpson, J. Inorg. Organomet. Polym. 18, 485 (2008)CrossRefGoogle Scholar
  34. 34.
    R.K. Nagarale, J.M. Lee, W. Shin, Electrochim. Acta 54, 6508 (2009)CrossRefGoogle Scholar
  35. 35.
    J.F. Hartwig, Acc. Chem. Res. 31, 852 (1998)CrossRefGoogle Scholar
  36. 36.
    I. Nakamura, G.B. Bajracharya, Y. Yamamoto, J. Org. Chem. 68, 2297 (2003)CrossRefGoogle Scholar
  37. 37.
    R.S. Herrick, C.J. Ziegler, M. Precopio, K. Crandall, J. Shaw, R.M. Jarret, J. Organomet. Chem. 693, 619 (2008)CrossRefGoogle Scholar
  38. 38.
    R.S. Herrick, B.R. Franklin, C.J. Ziegler, A. Çetin, Inorg. Chem. Commun. 12, 1209 (2009)CrossRefGoogle Scholar
  39. 39.
    V.B. Kandimalla, V.S. Tripathi, H. Ju, Biomaterials 27, 1167 (2006)CrossRefGoogle Scholar
  40. 40.
    X. Wang, H. Gu, F. Yin, Y. Tu, Biosens. Bioelectron. 24, 1527 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Chen, G. Diao, Talanta 80, 815 (2009)CrossRefGoogle Scholar
  42. 42.
    S. Wu, Y. Chen, F. Zeng, S. Gong, Z. Tong, Macromolecules 39, 6796 (2006)CrossRefGoogle Scholar
  43. 43.
    W. Yang, H. Zhou, C. Sun, Macromol. Rapid Commun. 28, 265 (2007)CrossRefGoogle Scholar
  44. 44.
    S.A. Merchant, D.T. Glatzhofer, D.W. Schmidtke, Langmuir 23, 11295 (2007)CrossRefGoogle Scholar
  45. 45.
    S.A. Merchant, T.O. Tran, M.T. Meredith, T.C. Cline, D.T. Glatzhofer, D.W. Schmidtke, Langmuir 25, 7736 (2009)CrossRefGoogle Scholar
  46. 46.
    E. Lorenzo, F. Pariente, L. Hernandez, F. Tobalina, M. Darder, Q. Wu, M. Maskus, H.D. Abruna, Biosens. Bioelectron. 13, 319 (1998)CrossRefGoogle Scholar
  47. 47.
    H. Zheng, J. Zhou, J. Zhang, R. Huang, H. Jia, S. Suye, Microchim. Acta 165, 109 (2009)CrossRefGoogle Scholar
  48. 48.
    S. Suye, H. Zheng, H. Okada, T. Hori, Sens. Actuators B 108, 671 (2005)CrossRefGoogle Scholar
  49. 49.
    S. Suye, Y. Aramoto, M. Nakamura, I. Tabata, M. Sakakibara, Enzym. Microb. Technol. 30, 139 (2002)CrossRefGoogle Scholar
  50. 50.
    H. Ho, A. Najari, M. Leclerc, Acc. Chem. Res. 41, 168 (2008)CrossRefGoogle Scholar
  51. 51.
    L. Zhang, H. Sun, D. Li, S. Song, C. Fan, S. Wang, Macromol. Rapid Commun. 29, 1489 (2008)CrossRefGoogle Scholar
  52. 52.
    Y. Wu, S. Liu, L. He, Anal. Chem. 81, 7015 (2009)CrossRefGoogle Scholar
  53. 53.
    J. Qiu, R. Liang, R. Wang, L. Fan, Y. Chen, X. Xia, Biosens. Bioelectron. 25, 852 (2009)CrossRefGoogle Scholar
  54. 54.
    A.C. Partridge, M.L. Jansen, W.M. Arnold, Mater. Sci. Eng. C 12, 37 (2000)CrossRefGoogle Scholar
  55. 55.
    M.M. Ayad, N.L. Torad, Talanta 78, 1280 (2009)CrossRefGoogle Scholar
  56. 56.
    M.M. Ayad, G. El-Hefnawey, N.L. Torad, J. Hazard. Mater. 168, 85 (2009)CrossRefGoogle Scholar
  57. 57.
    M.M. Ayad, G. El-Hefnawey, N.L. Torad, Sens. Actuators B 134, 887 (2008)CrossRefGoogle Scholar
  58. 58.
    M.M. Ayad, N. Prastomo, A. Matsuda, J. Stejskal, Synth. Met. 160, 42 (2010)CrossRefGoogle Scholar
  59. 59.
    L. Al-Mashat, H.D. Tran, W. Wlodarski, R.B. Kaner, K. Kalantar-zadeh, Sens. Actuators B 134, 826 (2008)CrossRefGoogle Scholar
  60. 60.
    H. Meixner, J. Gerblinger, U. Lampe, M. Fleischer, Sens. Actuators B 23, 119 (1995)CrossRefGoogle Scholar
  61. 61.
    V. Casey, J. Cleary, G. D’Arcy, J.B. McMonagle, Sens. Actuators B 96, 114 (2003)CrossRefGoogle Scholar
  62. 62.
    S. Paul, N.N. Chavan, S. Radhakrishnan, Synth. Met. 159, 415 (2009)CrossRefGoogle Scholar
  63. 63.
    K. Szaciłowski, Chem. Rev. 108, 3481 (2008)CrossRefGoogle Scholar
  64. 64.
    J. Matsui, K. Abe, M. Mitsuishi, A. Aoki, T. Miyashita, Langmuir 25, 11061 (2009)CrossRefGoogle Scholar
  65. 65.
    Md.A. Rahman, J.I. Son, M. Won, Y. Shim, Anal. Chem. 81, 6604 (2009)CrossRefGoogle Scholar
  66. 66.
    Md.A Rahman, D. Park, S. Chang, C.J. McNeil, Y. Shim, Biosens. Bioelectron. 21, 1116 (2006)CrossRefGoogle Scholar
  67. 67.
    Md.A Rahman, N. Kwon, M. Won, E.S. Choe, Y. Shim, Anal. Chem. 77, 4854 (2005)CrossRefGoogle Scholar
  68. 68.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Adv. Mater. 10, 135 (1998)CrossRefGoogle Scholar
  69. 69.
    F. Schmidt-Stein, J. Gnichwitz, J. Salonen, R. Hahn, A. Hirsch, P. Schmuki, Electrochem. Commun. 11, 2000 (2009)CrossRefGoogle Scholar
  70. 70.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  71. 71.
    A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Phys. Stat. Sol. A 203, R28 (2006)CrossRefGoogle Scholar
  72. 72.
    N.K. Shrestha, J.M. Macak, F. Schmidt-Stein, R. Hahn, C.T. Mierke, B. Fabry, P. Schmuki, Angew. Chem. Int. Ed. 48, 969 (2009)CrossRefGoogle Scholar
  73. 73.
    E. Balaur, J.M. Macak, L. Taveira, P. Schmuki, Electrochem. Commun. 7, 1066 (2005)CrossRefGoogle Scholar
  74. 74.
    D. Gust, T.A. Moore, A.L. Moore, Chem. Commun. 1169 (2006)Google Scholar
  75. 75.
    D.K. James, J.M. Tour, Chem. Mater. 16, 4423 (2004)CrossRefGoogle Scholar
  76. 76.
    C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)CrossRefGoogle Scholar
  77. 77.
    A. Nitzan, M.A. Ratner, Science 300, 1384 (2003)CrossRefGoogle Scholar
  78. 78.
    E.W. Abel, N.J. Long, K.G. Orrell, A.G. Osborne, V. Sik, J. Organomet. Chem. 403, 195 (1991)CrossRefGoogle Scholar
  79. 79.
    T. Muraoka, K. Kinbara, Y. Kobayashi, T. Aida, J. Am. Chem. Soc. 125, 5612 (2003)CrossRefGoogle Scholar
  80. 80.
    O. Shoji, S. Okada, A. Satake, Y. Kobuke, J. Am. Chem. Soc. 127, 2201 (2005)CrossRefGoogle Scholar
  81. 81.
    T. Muraoka, K. Kinbara, T. Aida, Nature 440, 512 (2006)CrossRefGoogle Scholar
  82. 82.
    D. Zhang, Q. Zhang, J. Su, H. Tian, Chem. Commun. 1700 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wael A. Amer
    • 1
  • Li Wang
    • 1
  • Abid M. Amin
    • 1
  • Liang Ma
    • 1
  • Haojie Yu
    • 1
  1. 1.State Key Laboratory of Chemical Engineering, Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations