New Binuclear Complexes with Mixed Ligands and μ2-Phenol Oxygen Bridges: Synthesis Crystal Structures and Magnetism

  • Shu-Lin Ma
  • Shi Ren
  • Yun Yang


Two new complexes, [M2(L)2(bpy)2](ClO4)2 [L = methyl salicylate, bpy = 2,2′-bipyridine, M = Cu (1) and Zn (2)] have been synthesized and structurally characterized by X-ray structure analyses. The centrosymmetric dimeric structure consists of a binuclear unit, in which M (M = Cu or Zn) atoms are bridged by two phenol oxygen atoms as a μ 2-bridged. The neighboring binuclear units interact with each other by two kinds of weak contacts: one kind is π–π stacking by π–σ attraction with an edge-to-face C–H···π interaction, and the second type is a H-bonding interaction, which extends the binuclear unit into a 3D network. Magnetic measurements confirm that 1 presents a very strong intradinuclear ferromagnetic coupling between the copper(II) ions.


Mixed ligand μ-Phenol oxygen bridges Offset π-stacked Hydrogen-bond Crystal structure Magnetic properties 


  1. 1.
    J.E. Frew, S.W. Bayliff, P.N.B. Gibbs, M.J. Green, Anal. Chim. Acta 224, 39 (1989)CrossRefGoogle Scholar
  2. 2.
    T. Kakkar, M. Mayersohn, J. Chromatogr. B 718, 69 (1998)CrossRefGoogle Scholar
  3. 3.
    A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 102, 9779 (1998)CrossRefGoogle Scholar
  4. 4.
    M.J. Wójcik, C. Paluszkiewicz, Can. J. Chem. 61, 1449 (1983)CrossRefGoogle Scholar
  5. 5.
    H.I.S. Nogueira, Spectrochim. Acta A 54, 1461 (1998)CrossRefGoogle Scholar
  6. 6.
    D. Philip, A. John, C.Y. Panicker, H.T. Varghese, Spectrochim. Acta A 57, 1561 (2001)CrossRefGoogle Scholar
  7. 7.
    C.Y. Panicker, H.T. Varghse, A. John, D. Philip, K. Istvan, G. Keresztury, Spectrochim. Acta A 58, 281 (2002)CrossRefGoogle Scholar
  8. 8.
    B.H. Ye, M.L. Tong, X.M. Chen, Coord. Chem. Rev. 249, 545 (2005)CrossRefGoogle Scholar
  9. 9.
    J.H. Thurston, A. Kumar, C. Hofmann, K.H. Whitmire, Inorg. Chem. 43, 8427 (2004)CrossRefGoogle Scholar
  10. 10.
    F. Wiesbrock, H. Schmidbaur, Inorg. Chem. 42, 7283 (2003)CrossRefGoogle Scholar
  11. 11.
    F. Wiesbrock, H. Schmidbaur, J. Am. Chem. Soc. 125, 3622 (2003)CrossRefGoogle Scholar
  12. 12.
    J.H. Thurston, K.H. Whitmire, Inorg. Chem. 41, 4194 (2002)CrossRefGoogle Scholar
  13. 13.
    G.M. Sheldrick, SHELXS-97 and SHELXL-97 (University of Göttingen, Germany, 1997)Google Scholar
  14. 14.
    H.T. Varghese, C.Y. Panicker, D. Philip, J.R. Mannekutla, S.R. Inamdar, Spectrochim Acta A 66, 959 (2007)CrossRefGoogle Scholar
  15. 15.
    M.R. Rosenthal, J. Chem. Educ. 50, 331 (1973)CrossRefGoogle Scholar
  16. 16.
    C. Janiak, J. Chem. Soc., Dalton Trans. 3885 (2000)Google Scholar
  17. 17.
    K. Biradha, C. Seward, M.J. Zaworotko, Angew. Chem. Int. Ed. 38, 492 (1999)CrossRefGoogle Scholar
  18. 18.
    N.N.L. Madhavi, G.R. Desiraju, A.K. Katz, H.L. Carrell, A. Nangia, Chem. Commun. 1953 (1997)Google Scholar
  19. 19.
    H.C. Weiss, D. Bläser, R. Boese, B.M. Doughan, M.M. Haley, Chem. Commun. 1703 (1997)Google Scholar
  20. 20.
    M. Nishio, M. Hirota, Y. Umezawa, The CH/π Interaction: Evidence, Nature and Consequences (Wiley-VCH, Weinheim, Germany, 1998)Google Scholar
  21. 21.
    M. Fondo, A.M. García-Deibe, M. Corbella, J. Ribas, A. Llamas-Saiz, M.R. Bermejo, J. Sanmartín, Dalton Trans. 3503 (2004)Google Scholar
  22. 22.
    T. Kamiusuki, H. Ökawa, E. Kitaura, M. Koikawa, N. Matsumoto, S. Kida, H. Oshio, J. Chem. Soc., Dalton Trans. 2077 (1989)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Application Chemistry, College of ScienceTianjin University of CommerceTianjinPeople’s Republic of China

Personalised recommendations