Lipase Catalyzed Synthesis and Thermal Properties of Poly(dimethylsiloxane)–Poly(ethylene glycol) Amphiphilic Block Copolymers

  • Yadagiri Poojari
  • Stephen J. Clarson


Resin immobilized lipase B from Candida antarctica (CALB) was used to catalyze the condensation polymerization of two difuctional siloxane and poly(ethylene glycol) systems. In the first system, 1,3-bis(3-carboxypropyl)tetramethyldisiloxane was reacted with poly(ethylene glycol) (PEG having a number-average molecular weight, Mn = 400, 1000 and 3400 g mol−1, respectively). In the second system, α,ω-(dihydroxy alkyl) terminated poly(dimethylsiloxane) (HAT-PDMS, Mn = 2500 g mol−1) was reacted with α,ω-(diacid) terminated poly(ethylene glycol) (PEG, Mn = 600 g mol−1). All the reactions were carried out in the bulk (without use of solvent) at 80 °C and under reduced pressure (500 mmHg vacuum gauge). The progress of the polyesterification reactions was monitored by analyzing the samples collected at various time intervals using FTIR and GPC. The thermal properties of the copolymers were characterized by DSC and TGA. In particular, the effect of the chain length of the PEG block on the molar mass build up and on the thermal stability of the copolymers was also studied. The thermal stability of the enzymatically synthesized copolymers was found to increase with increased dimethylsiloxane content in the copolymers.


Lipase Poly(ethylene glycol) Poly(dimethylsiloxane) Copolymers Amphiphilic 



We thank the National Science Foundation for funding to UC (Clarson) under NSF TIE Grant, NSF #0631412. We sincerely thank Dr. Joerg Simpelkamp, Degussa, for the kind gift of the functional silicone monomer (TEGOMER® H–Si 2311) and for helpful discussions.


  1. 1.
    G. Kickelbick, J. Bauer, N. Hüsing, M. Andersson, A. Palmqvist, Langmuir 19, 3198 (2003)CrossRefGoogle Scholar
  2. 2.
    J.H. Park, K.D. Park, Y.H. Bae, Biomaterials 20, 943 (1999)CrossRefGoogle Scholar
  3. 3.
    G. Belorgey, G. Sauvet, in Silicon-Containing Polymers, ed. by R.G. Jones, W. Ando, J. Chojnowski (Kluwer Academic Publishers, Dordrecht, Netherlands, 2000), p. 43Google Scholar
  4. 4.
    M.E. Van Dyke, S.J. Clarson, R. Arshady, in Introduction to Polymeric Biomaterials, ed. by R. Arshady, The PBM Series, vol 1 (Citus Books, London, 2003), p. 109Google Scholar
  5. 5.
    M. Rutnakornpituk, P. Ngamdee, P. Phinyocheep, Polymer 46, 9742 (2005)CrossRefGoogle Scholar
  6. 6.
    H. Jukarainen, S.J. Clarson, J.V. Seppälä, Polym. Prepr. 39(1), 585 (1998)Google Scholar
  7. 7.
    H. Jukarainen, S.J. Clarson, J.V. Seppälä, in Silicones and Silicone-Modified Materials, ed. by S.J. Clarson, J.J. Fitzgerald, M.J. Owen, S.D. Smith (American Chemical Society, Washington DC, 2000), pp. 353–358CrossRefGoogle Scholar
  8. 8.
    H.J. Liu, L.H. Lin, K.M. Chen, Text. Res. J. 73, 583 (2003)CrossRefGoogle Scholar
  9. 9.
    R.A. Gross, H.N. Cheng, in Polymer Biocatalysis and Biomaterials, ACS Symposium Series 900 (Washington, DC, 2005), pp. 1–12Google Scholar
  10. 10.
    R.A. Gross, A. Kumar, B. Kalra, Chem. Rev. 101, 2097 (2001)CrossRefGoogle Scholar
  11. 11.
    S. Kobayashi, J. Polym. Sci. Part A: Polym. Chem. 37, 3041 (1999)CrossRefGoogle Scholar
  12. 12.
    S. Kobayashi, H. Uyama, S. Kimura, Chem. Rev. 101, 3793 (2001)CrossRefGoogle Scholar
  13. 13.
    Y. Poojari, A.S. Palsule, M. Cai, S.J. Clarson, R.A. Gross, Eur. Polym. J. 44, 4139 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Poojari, S.J. Clarson, Silicon. 1(2), (2009), (online)Google Scholar
  15. 15.
    B. Sahoo, A. Bhattacharya, H. Fu, W. Gao, R.A. Gross, Biomacromolecules 7(4), 1042 (2006)CrossRefGoogle Scholar
  16. 16.
    S.J. Clarson, J.A. Semlyen, Polymer 27, 91 (1986)CrossRefGoogle Scholar
  17. 17.
    M. Zelden, B. Quian, S.J. Choi, J. Polym. Sci. Polym. Chem. Edn. 21, 1361 (1983)CrossRefGoogle Scholar
  18. 18.
    N. Grassie, I.G. MacFarlane, Eur. Polym. J. 14, 875 (1978)CrossRefGoogle Scholar
  19. 19.
    C.E. Selby, J.O. Stuart, S.J. Clarson, S.D. Smith, A. Sabata, W.J. Ooij, N.G. Cave, J. Inorg. Organomet. Polym. 4, 85 (1994)CrossRefGoogle Scholar
  20. 20.
    S.J. Clarson, C.E. Selby, J.O. Stuart, A. Sabata, S.D. Smith, A. Ashraf, Macromolecules 28, 674 (1995)CrossRefGoogle Scholar
  21. 21.
    A.V. Jadhav, S.V. Patwardhan, H.W. Ahn, C.E. Selby, J.O. Stuart, X.K. Zhang, C.M. Kuo, E.A. Sheerin, R.A. Vaia, S.D. Smith, S.J. Clarson, in Science and Technology of Silicones and Silicone-Modified Materials, ed. by S.J. Clarson, J.J. Fitzgerald, M.J. Owen, S.D. Smith and M.E. Van Dyke, ACS Symposium Series vol 964 (Oxford University Press, Oxford, 2007), pp. 116–135Google Scholar
  22. 22.
    R.M. Hill, Silicone Surfactants (Marcel Dekker, New York, 1999), pp. 1–48Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical and Materials Engineering, and NSF I/UCRC Membrane Applied Science and Technology CenterUniversity of CincinnatiCincinnatiUSA

Personalised recommendations