Advertisement

Synthesis and Characterization of Nanostructure BPO4

  • Shuang Chen
  • Ming Ye
  • Hao-Hong Chen
  • Xin-Xin Yang
  • Jing-Tai Zhao
Article

Abstract

Boron phosphate (BPO4) is a well known catalyst for a range of organic chemical reactions. In this paper, we report the preparations and characterizations of nano-sized BPO4 and nano-BPO4-based core-shell spheres. The samples were synthesized hydrothermally using H3BO3, H3PO4 and short chain n-alkylamines (n = 3, 4) as starting materials. The resulting products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scan electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. A possible mechanism for the formation of the materials is also discussed.

Keywords

Nano-sized BPO4 Core-shell BPO4 n-Alkylamine Hydrothermal synthesis 

Notes

Acknowledgements

This work was supported by the Major Basic Research Programs of Shanghai (No. 07DJ14001) and State ‘973’ project (2007CB936704), the Hundred Talents Program from the Chinese Academy of Sciences and fund for Young Leading Researchers from Shanghai municipal government.

References

  1. 1.
    L.S. Roman, M.R. Andersson, T. Yohannes, O. Inganas, Adv. Mater. 9, 1164 (1997)CrossRefGoogle Scholar
  2. 2.
    G. He, J. Eckert, W. Löser, L. Schultz, Nat. Mater. 2, 33 (2003)CrossRefGoogle Scholar
  3. 3.
    J.Y. Cheng, A.M. Mayes, C.A. Ross, Nat. Mater. 3, 823 (2004)CrossRefGoogle Scholar
  4. 4.
    P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007)CrossRefGoogle Scholar
  5. 5.
    F. Caruso, Adv. Mater. 13, 11 (2001)CrossRefGoogle Scholar
  6. 6.
    Y.F. Zhu, J.L. Shi, W.H. Shen, X.P. Dong, J.W. Feng, M.L. Ruan, Y.S. Li, Angew. Chem. Int. Ed. 44, 5083 (2005)CrossRefGoogle Scholar
  7. 7.
    H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu, J. Am. Chem. Soc. 129, 8406 (2007)CrossRefGoogle Scholar
  8. 8.
    J.K. Yuan, K. Laubernds, Q.H. Zhang, S.L. Suib, J. Am. Chem. Soc. 125, 4966 (2003)CrossRefGoogle Scholar
  9. 9.
    F. Caruso, R.A. Caruso, H. Mohwald, Science 282, 1111 (1998)CrossRefGoogle Scholar
  10. 10.
    H.Y. Huang, E.E. Remsen, T. Kowalewski, K.L. Wooley, J. Am. Chem. Soc. 121, 3805 (1999)CrossRefGoogle Scholar
  11. 11.
    Y. Uragami, K. Otsuka, J. Chem. Soc., Faraday Trans. 88, 3605 (1992)CrossRefGoogle Scholar
  12. 12.
    K. Otsuka, Y. Uragami, M. Hatano, Catal. Today 13, 667 (1992)CrossRefGoogle Scholar
  13. 13.
    A. Tada, H. Suzuka, Y. Imizu, Chem. Lett. 423 (1987)Google Scholar
  14. 14.
    S. Gao, J.B. Moffat, J. Catal. 180, 142 (1998)CrossRefGoogle Scholar
  15. 15.
    S. Imamura, K. Imakubo, S. Furuyoshi, H. Jindai, Ind. Eng. Chem. Res. 30, 2355 (1991)CrossRefGoogle Scholar
  16. 16.
    S. Imamura, T. Higashihara, K. Utani, Ind. Eng. Chem. Res. 34, 967 (1995)CrossRefGoogle Scholar
  17. 17.
    S. Imamura, T. Higashihara, H. Jindai, Chem. Lett. 22, 1667 (1993)Google Scholar
  18. 18.
    S. Satoshi, H. Mitsuharu, S. Toshiaki, N. Fumio, Bull. Chem. Soc. Jpn. 64, 516 (1991)CrossRefGoogle Scholar
  19. 19.
    S.M.J. Zaidi, Electrochim. Acta. 50, 4771 (2005)CrossRefGoogle Scholar
  20. 20.
    P. Krishnan, J.S. Park, C.S. Kim, J. Membr. Sci. 279, 220 (2006)CrossRefGoogle Scholar
  21. 21.
    E.M. Kelder, M.J.G. Jak, F. de Lange, J. Schoonman, Solid state ion 85, 285 (1996)CrossRefGoogle Scholar
  22. 22.
    M. Schmidt, B. Ewald, Y. Prots, R. Cardoso-Gil, M. Armbruster, I. Loa, L. Zhang, Y.X. Huang, U. Schwarz, R. Kniep, Z. Anorg. Allg. Chem. 630, 655 (2004)CrossRefGoogle Scholar
  23. 23.
    Z.H. Li, Y.C. Wu, P.Z. Fu, S.L. Pan, C.T. Chen, J. Crys. Grow. 270, 486 (2004)CrossRefGoogle Scholar
  24. 24.
    Z.H. Li, Z.H. Lin, Y.C. Wu, P.Z. Fu, Z.Z. Wang, C.T. Chen, Chem. Mater. 16, 2906 (2004)CrossRefGoogle Scholar
  25. 25.
    C. Lin, Y. Luo, H. You, Z. Quan, J. Zhang, J. Fang, J. Lin, Chem. Mater. 18, 458 (2006)CrossRefGoogle Scholar
  26. 26.
    C.M. Zhang, C.K. Lin, C.X. Li, Z.W. Quan, X.M. Liu, J. Lin, J. Phys. Chem. C 112, 2183 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Adamczyk, M. Handke, J. Mol. Struct. 555, 159 (2000)CrossRefGoogle Scholar
  28. 28.
    A. Baykal, M. Kizilyalli, M. Toprak, R. Kniep, Turk. J. Chem. 25, 425 (2001)Google Scholar
  29. 29.
    C. Diaz, D. Abizanda, J. Jiménez, A. Laguna, M.L. Valenzuela, J. Inorg. Organomet. Polym. Mater. 16, 211 (2006)CrossRefGoogle Scholar
  30. 30.
    S. Chen, H. Borrmann, Y.X. Huang, Z.J. Zhang, H.H. Chen, J.T. Zhao, Langmuir 24, 9323 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shuang Chen
    • 1
    • 2
  • Ming Ye
    • 3
    • 2
  • Hao-Hong Chen
    • 1
  • Xin-Xin Yang
    • 1
  • Jing-Tai Zhao
    • 1
  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Single Molecule Detecting and Manipulating Lab, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations