Advertisement

Synthesis and Changes of Conductivities and Thermal Stabilities of 4,4′-Oxybis [N-(3,4-Dihydroxybenzilidene) Aniline] Chelate Polymers

  • İsmet Kaya
  • Mehmet Yıldırım
Article

Abstract

In this study novel metal coordination polymers were synthesized such as poly-4,4′-oxybis[N-(3,4-dihydroxybenzilidene)aniline] (P-3,4-HBA) containing Cu, Co, Pb, Ni, Zn, Cd, Cr, Mn and Zr metals in the polymer backbone. The polymers are abbreviated as P-3,4-HBA-Cu, P-3,4-HBA-Co, P-3,4-HBA-Pb, P-3,4-HBA-Ni, P-3,4-HBA-Zn, P-3,4-HBA-Cd, P-3,4-HBA-Cr, P-3,4-HBA-Mn and P-3,4-HBA-Zr, respectively. To confirm the structures FT-IR, UV-vis, 1H and 13C-NMR spectral techniques were used. Additional characterization of the polymers was made by size exclusion chromatography (SEC), TGA-DTA and solubility tests. By TGA analysis, P-3,4-HBA-Zr was the most stable polymer against thermal degradation among those synthesized. In addition, it was found that, with exception of P-3,4-HBA-Cr, the other synthesized polymers have little solubility in many organic solvents and water. According to SEC results, P-3,4-HBA-Cr has a single fraction containing 21–22 mer units. Electrical conductivities of the monomer and polymers were measured by the four-point probe technique. The polymers were semiconductors; and, some of their conductivities can be increased via doping with iodine. According to the electrical conductivities of the undoped P-3,4-HBA-Cr and P-3,4-HBA-Zr polymers have nearly ten-times higher conductivities in comparison to the others. From UV-vis measurements, the optical band gaps (E g ) of 3,4-HBA and P-3,4-HBA-Cr were 2.58 and 2.39 eV, respectively. This result indicates that P-3,4-HBA-Cr has a lower band gap and consequently higher electrical conductivity than 3,4-HBA. Thus, with good solubility, high electrical conductivity and high thermal stability P-3,4-HBA-Cr may be considered as the most useful metal coordination polymer among those synthesized.

Keywords

Metal containing polymers Metallopolymers Conjugated polymers Polyazomethine Thermal analysis Conductivity Optical band gap 

References

  1. 1.
    S. Takahashi, E. Murata, M. Kariya, K. Sonogashira, N. Hagihara, Macromolecules. 12, 1016 (1979)CrossRefGoogle Scholar
  2. 2.
    S. Takahashi, H. Morimoto, Y. Takai, K. Sonogashira, N. Hagihara, Mol. Cryst. Liq. Cryst. 72, 101 (1981)CrossRefGoogle Scholar
  3. 3.
    K. Hanabusa, C. Kobayashi, T. Koyama, E. Masuda, H. Shirai, Y. Kondo, K. Takemoto, E. Iizuka, N. Hojo, Makromol. Chem. 187, 753 (1986)CrossRefGoogle Scholar
  4. 4.
    K. Hanabusa, Y. Tanimura, T. Suzuki, T. Koyama, H. Shirai, Makromol. Chem. 192, 233 (1991)CrossRefGoogle Scholar
  5. 5.
    G. Konishi, K. Naka, Y. Chujo, J. Inorg. Organomet. P. 9, 179 (1999)CrossRefGoogle Scholar
  6. 6.
    C. Qin, X.L. Wang, E.B. Wang, C.W. Hu, L. Xu, Inorg. Chim. Acta. 357, 3683 (2004)CrossRefGoogle Scholar
  7. 7.
    R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, S. Horike, M. Takata, J. Am. Chem. Soc. 126, 14063 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Yang, L. Wang, G.H. Li, L. Yang, Z. Shi, S.H. Feng, J. Alloy. Compd. 440, 57 (2007)CrossRefGoogle Scholar
  9. 9.
    F. Zuo, I. Yu, M.B. Salmon, X. Hong, S.I. Stupp, J. Appl. Phys. 69, 7951 (1991)CrossRefGoogle Scholar
  10. 10.
    S.R. Batten, R. Robson, Angew. Chem. Int. Ed. 37, 1460 (1998)CrossRefGoogle Scholar
  11. 11.
    B. Moulton, M.J. Zaworotko, Chem. Rev. 101, 1629 (2001)CrossRefGoogle Scholar
  12. 12.
    O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature 423, 705 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Kitagawa, R. Kitaura, S.I. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004)CrossRefGoogle Scholar
  14. 14.
    C. Janiak, Dalton Trans. (2003)Google Scholar
  15. 15.
    U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastré, J. Mater. Chem. 16, 626 (2006)CrossRefGoogle Scholar
  16. 16.
    C.S. Marvel, P.V. Bonsignore, J. Am. Chem. Soc. 81, 2668 (1959)CrossRefGoogle Scholar
  17. 17.
    L. Marin, V. Cozan, M. Bruma, V.C. Grigoras, Eur. Polym. J. 42, 1173 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Grigoras, C.O. Catanescu, J. Macromol. Sci. Part C-Polym. Revi. C44, 131 (2004)Google Scholar
  19. 19.
    İ. Kaya, A.R. Vilayetoğlu, H. Mart, Polymer 42, 4859 (2001)CrossRefGoogle Scholar
  20. 20.
    İ. Kaya, S. Koça, Polymer 45, 1743 (2004)CrossRefGoogle Scholar
  21. 21.
    İ. Kaya, H.O. Demir, A.R. Vilayetoğlu, Synthetic Met. 126, 183 (2002)CrossRefGoogle Scholar
  22. 22.
    İ. Kaya, S. Koyuncu, D. Şenol, Eur. Polym. J. 42, 3140 (2006)CrossRefGoogle Scholar
  23. 23.
    İ. Kaya, M. Yıldırım, Eur. Polym. J. 43, 127 (2007)CrossRefGoogle Scholar
  24. 24.
    İ. Kaya, M. Yıldırım, J. Appl. Polym. Sci. 106, 2282 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Marcos, L. Oriol, J.L. Serrano, Macromolecules 25, 5362 (1992)CrossRefGoogle Scholar
  26. 26.
    M.O. Wolf, J. Inorg. Organomet. P. 16, 189 (2006)CrossRefGoogle Scholar
  27. 27.
    F.R. Diaz, J. Moreno, L.H. Tagle, G.A. East, D. Radic, Synth. Met. 100, 187 (1999)CrossRefGoogle Scholar
  28. 28.
    K. Colladet, M. Nicolas, L. Goris, L. Lutsen, D. Vanderzande, Thin Solid Films 451–452, 7 (2004)CrossRefGoogle Scholar
  29. 29.
    İ. Kaya, S. Koyuncu, Iran. Polym. J. 16, 261 (2007)Google Scholar
  30. 30.
    N. Satoh, T. Nakashima, K. Yamamoto, J. Am. Chem. Soc. 127, 13030 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Sciences and ArtsÇanakkale Onsekiz Mart UniversityCanakkaleTurkey

Personalised recommendations