Synthesis of Two New Polyferrocenylsilanes and Magnetic Properties of Their Charge Transfer Complexes

  • Yunyang Liu
  • Hongding Tang
  • Jingui Qin
  • Makoto Inokuchi
  • Minoru Kinoshita


Two polyferrocenylsilanes (PFSs) 1 and 2 with aniline and carbazolyl as side chains have been prepared by treating silyl-chloride functionalized PFS (PFS-Cl) with hydroxyl-ended aniline and carbazole compounds, respectively, and characterized by NMR, FT-IR, elemental analysis (EA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cyclic voltammetry (CV). Both of them could be oxidized by iodine and 2,3-dichloro-5,6-dicyanoquinone (DDQ) to form complexes. PFS 1 could be oxidized by tetracyanoethylene (TCNE) too. The complexes are characterized by FT-IR, EA, Iron-57 Mössbauer spectroscopy. All of them are partially oxidized by the oxidants and both FeII and FeIII coexist in the complexes. Magnetic property measurement by superconducting quantum interference device (SQUID) shows their paramagnetic properties with somewhat antiferromagnetic interaction. Results show that the joint type between PFS backbone and the electron-rich side groups has less direct effect on the exhibition of ferromagnetic interaction in their complexes.


Polymer magnetism charge transfer complex polyferrocenylsilane 



This work is financially supported by the National Science Foundation of China and the National Key Fundamental Research Program.


  1. 1.
    Bushby R. J., Gooding D., Vale M. E. (1999) Phil. Trans. R. Soc. Lond. A 357:2939, and references thereinCrossRefGoogle Scholar
  2. 2.
    Blundell S. J., Pratt F. L. (2004) J. Phys.: Condens. Matter. 16:R771CrossRefGoogle Scholar
  3. 3.
    Verdaguer M. (2001) Polyhedron 20:1115CrossRefGoogle Scholar
  4. 4.
    Kaul B. B., Noll B. C., Yee G. T. (2001) J. Solid State Chem. 159:420CrossRefGoogle Scholar
  5. 5.
    Fujita W., Awaga K. (1999) Science 286:261CrossRefGoogle Scholar
  6. 6.
    Rajca J., Wongsriratanakul, Rajca S. (2001) Science 294:1503CrossRefGoogle Scholar
  7. 7.
    Miller J. S. (2000) Inorg. Chem. 39:4392CrossRefGoogle Scholar
  8. 8.
    Raebinger J. W., Miller J. S. (2002) Inorg. Chem. 41:3308CrossRefGoogle Scholar
  9. 9.
    Pokhodnya K. I., Peterson N., Miller J. S. (2002) Inorg. Chem. 41:1996CrossRefGoogle Scholar
  10. 10.
    Kinoshita M. (1999) Phil. Trans. R. Soc. Lond. A 357:2855CrossRefGoogle Scholar
  11. 11.
    Miller J. S., Calabrese J. C., Rommelmann H., Chittipeddi S. R., Zhang J. H., Reiff W. M., Epstein A. J. (1987) J. Am. Chem. Soc. 109:769CrossRefGoogle Scholar
  12. 12.
    Foucher D. A., Tang B. Z., Manners I. (1992) J. Am. Chem. Soc. 114:6246CrossRefGoogle Scholar
  13. 13.
    I. Manners, Chem. Commun. 857 (1999)Google Scholar
  14. 14.
    Arsenault A. C., Miguez H., Kitaev V., Ozin G. A., Manners I. (2003) Adv. Mater. 15:503CrossRefGoogle Scholar
  15. 15.
    Rulkens R., Resendes R., Verma A., Manners I., Murtl K., Fossum E., Miller P., Matyjaszewski K. (1997) Macromolecules 30:8165CrossRefGoogle Scholar
  16. 16.
    Bakueva L., Sargent E. H., Resendes R., Bartole A., Manners I. (2001) J. Mater. Sci.: Mater. Electro 12:21CrossRefGoogle Scholar
  17. 17.
    Power-Billard K. N., Manners I. (2000) Macromolecules 33:26CrossRefGoogle Scholar
  18. 18.
    Lammertink R. G. H., Hempenius M. A., Chan V. Z.-H., Thomas E. L., Vancso G. J. (2001) Chem. Mater. 13:429CrossRefGoogle Scholar
  19. 19.
    Cyr P. W., Tzolov M., Manners I., Sargent E. H. (2003) Macromol. Chem. Phys. 204:915CrossRefGoogle Scholar
  20. 20.
    X. -H. Liu, D. W. Bruce, I. Manners, Chem. Commun. 2890 (1997)Google Scholar
  21. 21.
    Liu Y.-Y., Zhang X., Tang H.-D., Wang T.-J., Qin J.-G., Liu D.-Y., Li S.-J., Ye C. (2002) Chin. J. Chem. 20:1199CrossRefGoogle Scholar
  22. 22.
    Sun Q., Xu K., Peng H., Zheng R., Haussler M., Tang B. Z. (2003) Macromolecules 36:2309CrossRefGoogle Scholar
  23. 23.
    Wang X.-S., Arsenault A., Ozin G. A., Winnik M. A., Manners I. (2003) J. Am. Chem. Soc. 125:12686CrossRefGoogle Scholar
  24. 24.
    Manners I. (1996) Angew. Chem. Int. Ed. Engl. 35:1602CrossRefGoogle Scholar
  25. 25.
    Hmyene A., Yasser A., Escorne M., Percheron-Guegan A., Garnier F. (1994) Adv. Mater. 6:564CrossRefGoogle Scholar
  26. 26.
    Pudeski J. K., Foucher D. A., Honeyman C. H., Macdonald P. M., Manners I., O’Hare D. (1996) Macromolecules 29:1894CrossRefGoogle Scholar
  27. 27.
    Manners I. (1995) Adv. Organomet. Chem. 37:131, and references thereinCrossRefGoogle Scholar
  28. 28.
    Bushiby R. J., McGill D. R., Ng K. M., Taylor N. (1997) J. Mater. Chem. 7:2343CrossRefGoogle Scholar
  29. 29.
    Murray M. M., Kaszynski P., Kaisaki D. A., Chang W., Dougherty D. A. (1994) J. Am. Chem. Soc. 116:8152CrossRefGoogle Scholar
  30. 30.
    Liu Y., Tang H., Su X., Chen X., Li J., Qin J., Zhang X. (2003) Synth. Met. 135–136:171CrossRefGoogle Scholar
  31. 31.
    Tang H., Liu Y., Chen X., Qin J., Inokuchi M., Kinoshita M., Jin X., Wang Z., Xu B. (2004) Macromolecules 37:9785CrossRefGoogle Scholar
  32. 32.
    Nguyen P., Stojcevic G., Kulbaba K., MacLachlan M. J., Liu X.-H., Lough A. J., Manners I. (1998) Macromolecules 31:5977CrossRefGoogle Scholar
  33. 33.
    W. C. J. Ross, J. Chem. Soc. 183 (1983)Google Scholar
  34. 34.
    Li Z., Luo J., Zhan C., Qin J. (2000) Polym. Bull. 45:105CrossRefGoogle Scholar
  35. 35.
    Doyle J. R., Jonassen H. B. (1956) J. Am. Chem. Soc. 78:3965CrossRefGoogle Scholar
  36. 36.
    Barlow S., O’Hare D. (1997) Chem. Rev. 97:637CrossRefGoogle Scholar
  37. 37.
    Foucher D. A., Honeyman C. H., Nelson J. M., Tang B. Z., Manners I. (1993) Angew. Chem. Int. Ed. Engel. 32:1709CrossRefGoogle Scholar
  38. 38.
    Rulkens R., Lough A. J., Manners I., Lovelace S. R., Grant C., Geiger W. E. (1996) J. Am. Chem. Soc. 118:12683CrossRefGoogle Scholar
  39. 39.
    Diaz A. F., Baier M., Wallraff G. M., Miller R. D., Nelson J., Pietro W. (1991) J. Electrochem. Soc. 138:742CrossRefGoogle Scholar
  40. 40.
    Kramer J. A., Hendrickson D. N. (1980) Inorg. Chem. 19:3330CrossRefGoogle Scholar
  41. 41.
    Espada L., Pannell K. H., Papkov V., Leites L., Bukalov S., Suzdalev I., Tanaka M., Hayashi T. (2002) Organometallics 21:3758CrossRefGoogle Scholar
  42. 42.
    Werthein G. K., Herber R. H. (1963) J. Chem. Phys. 38:2106CrossRefGoogle Scholar
  43. 43.
    Nelson J. M., Nguyen P., Petersen R., Rengel H., Macdonald P. M., Lough A. J., Manners I., Raju N. P., Greedan J. E., Barlow S., O’Hare D. (1997) Chem. Eur. J. 3:573Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yunyang Liu
    • 1
  • Hongding Tang
    • 1
  • Jingui Qin
    • 1
    • 3
  • Makoto Inokuchi
    • 2
  • Minoru Kinoshita
    • 2
  1. 1.Department of ChemistryWuhan UniversityWuhanChina
  2. 2.Faculty of Science and Engineering, Department of Materials Science and Environmental EngineeringTokyo University of ScienceYamaguchiJapan
  3. 3.State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina

Personalised recommendations