Advertisement

Dispersion of Single-Walled Carbon Nanotubes in Water with Polyphosphazene Polyelectrolyte

  • Hye Jin Park
  • Hye Young Heo
  • Seung Cheol Lee
  • Min Park
  • Sang-Soo Lee
  • Junkyung Kim
  • Ji Young Chang
Article

 

A polyphosphazene polyelectrolyte was prepared as a dispersing agent of SWNTs in water. Poly(organophosphazene) was prepared by sequential treatment of poly(dichlorophosphazene) with sodium 4-phenylphenoxide, sodium phenoxide, and sodium trifluoroethoxide in THF. Their substitution percentages were 60, 24, and 16%, respectively. A water-soluble polyphosphazene polyelectrolyte was obtained by sulfonation of aromatic rings by using fuming sulfuric acid. SWNTs were dispersed in an aqueous polymer solution by sonication to give a black homogeneous dispersion. The supramolecular association between the nanotube and the sulfonated polyphosphazene was investigated by TEM, SEM, and AFM. The SEM image of the cleaved edge of the bucky paper, obtained by filtration of the dispersion of SWNTs, showed the nanotubes uniformly wrapped with the polymer. Their diameters were about 30 nm, suggesting small bundles of SWNTs rather than individual SWNTs. Individual SWNTs coated with the polymer were also observed by TEM. The total diameter of the coated tube was about 10 nm and a polymer layer thickness was lager than 4 nm.

Keywords

Polyphosphazene polyelectrolyte single-walled carbon nanotube dispersion 

Notes

Acknowledgments

This work was financially supported by the Hyperstructured Organic Materials Research Center at Seoul National University and by a grant from the Center for Advanced Materials Processing of the 21st Century Frontier R&D Program funded by the Ministry of Commerce Industry and Energy (MOCIE), Republic of Korea.

References

  1. 1.
    Mildred G. D., Dresselhaus S., Avouris P. (2001). Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  2. 2.
    Bekyarova E., Davis M., Burch T., Itkis M. E., Zhao B., Sunshine S., Haddon R. C. (2004). J. Phys. Chem. B 108:19717CrossRefGoogle Scholar
  3. 3.
    So H. M., Won K., Kim Y. H., Kim B. K., Ryu B. H., Na P. S., Kim P. S., Lee J. O. (2005) . J. Am. Chem. Soc. 127:11906CrossRefGoogle Scholar
  4. 4.
    Joshi P. P., Merchant S. A., Wang Y., Schmidtke D. W. (2005). Anal. Chem. 77:3183CrossRefGoogle Scholar
  5. 5.
    Girishkumar G., Hall T. D., Vinodgopal K., Kamat P. V. (2006) . J. Phys. Chem. B 110:107CrossRefGoogle Scholar
  6. 6.
    Wang D., Ji W. X., Li Z. C., Chen L. (2006). J. Am. Chem. Soc. 128:6556CrossRefGoogle Scholar
  7. 7.
    Murugesan S., Park T. J., Yang H., Mousa S., Linhardt R. J. (2006). Langmuir 22:3461CrossRefGoogle Scholar
  8. 8.
    Moore V. C., Strano M. S., Haroz E. H., Hauge R. H., Smalley R. E., Schmidt J., Talmon Y. (2003) . Nano Lett. 3:1379CrossRefGoogle Scholar
  9. 9.
    Tasis D., Tagmatarchis N., Bianco A., Prato M. (2006) . Chem. Rev. 106:1105CrossRefGoogle Scholar
  10. 10.
    Georgakilas V., Kordatos K., Prato M., Guldi D. M., Holzinger M., Hirsch A. (2002) . J. Am. Chem. Soc. 124:760CrossRefGoogle Scholar
  11. 11.
    Peng H., Alemany L. B., Margrave J. L., Khabashesku V. N. (2003) . J. Am. Chem. Soc. 125:15174CrossRefGoogle Scholar
  12. 12.
    Zhao W., Song C., Pehrsson P. E. (2002) . J. Am. Chem. Soc. 124:12418CrossRefGoogle Scholar
  13. 13.
    Paloniemi H., Aaritalo T., Laiho T., Liuke H., Kocharova N., Haapakka K., Terzi F., Seeber R., Lukkari J. (2005). J. Phys. Chem. B 109:8634CrossRefGoogle Scholar
  14. 14.
    Chen R. J., Zhang Y., Wang D., Dai H. (2001) . J. Am. Chem. Soc. 123:3838CrossRefGoogle Scholar
  15. 15.
    D. M. Guldi, G. M. A. Rahman, N. Jux, N. Tagmatarchis, M. Prato (2004). Angew. Chem. Int. Ed. 43:5526CrossRefGoogle Scholar
  16. 16.
    Zhang J., Lee J. K., Wu Y., Murray R. W. (2003). Nano Lett. 3:403CrossRefGoogle Scholar
  17. 17.
    Li S., He P., Dong J., Guo Z., Dai L. (2005) . J. Am. Chem. Soc. 127:14CrossRefGoogle Scholar
  18. 18.
    Hazani M., Naaman R., Hennrich F., Kappes M. M. (2003) . Nano Lett. 3:153CrossRefGoogle Scholar
  19. 19.
    Ortiz-Acevedo A., Xie H., Zorbas V., Sampson W. M., Dalton A. B., Baughman R. H., Draper R. K., Musselman I. H., Dieckmann G. R. (2005) . J. Am. Chem. Soc. 127:9512CrossRefGoogle Scholar
  20. 20.
    Zorbas V., Smith A. L., Xie H., Ortiz-Acevedo A., Dalton A. B., Dieckmann G. R., Draper R. K., Baughman R. H., Musselman I. H. (2005). J. Am. Chem. Soc. 127:12323CrossRefGoogle Scholar
  21. 21.
    Lin Y., Allard L. F., Sun Y. P. (2004) . J. Phys. Chem. B 108:3760CrossRefGoogle Scholar
  22. 22.
    Sinani V. A., Gheith M. K., Yaroslavov A. A., Rakhnyanskaya A. A., Sun K., Mamedov A. A., Wicksted J. P., Kotov N. A. (2005) . J. Am. Chem. Soc. 127:3463CrossRefGoogle Scholar
  23. 23.
    Islam M. F., Rojas E., Bergey D. M., Johnson A. T., Yodh A. G. (2003) . Nano Lett. 3:269CrossRefGoogle Scholar
  24. 24.
    O’Connell M. J., Boul P., Ericson L. M., Huffman C., Wang Y., Haroz E., Kuper C., Tour J., Ausman K. D., Smalley R. E. (2001). Chem. Phys. Lett. 342:265CrossRefGoogle Scholar
  25. 25.
    Allcock H.R. (2003). Chemistry and Applications of Polyphosphazenes. John Wiley & Sons, Hoboken, NJGoogle Scholar
  26. 26.
    Shim M., Javey A., Shi Kam N. W., Dai H. (2001). J. Am. Chem. Soc. 123:11512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Hye Jin Park
    • 1
  • Hye Young Heo
    • 1
  • Seung Cheol Lee
    • 1
  • Min Park
    • 2
  • Sang-Soo Lee
    • 2
  • Junkyung Kim
    • 2
  • Ji Young Chang
    • 1
  1. 1.Hyperstructured Organic Materials Research Center, School of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Polymer Hybrids Research CenterKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations