Microsize and Nanosize BPO4 from Pyrolysis of a Carborane-Substituted Polyphosphazene

  • Carlos Díaz
  • Domingo Abizanda
  • Josefina Jiménez
  • Antonio Laguna
  • Maria Luisa Valenzuela

Pyrolysis in air of the carborane-substituted polyphosphazene, {[NP({OCH2}2C2B10H10)]0.5 [NP({OCH2}2C2B9H10· NBu4)]0.5} n affords BPO4 crystals of varied sizes in the micro and nano regime.The materials were characterised by IR spectroscopy, SEM-EDAX, TEM, X-ray diffraction, and DTA analysis. A possible mechanism for the formation of these materials is discussed and compared with that found for the formation of metallic nanostructured materials from the pyrolysis of anchored organometallic derivatives of polyphosphazenes.


Polyphosphazenes carborane boron-nanoparticles organometallic polymers pyrolysis. 



This work is supported by Fondecyt (project 1030515), MEC (CTQ2004–05495-C02–01/BQU) and Gobierno de Aragon.


  1. 1.
    Edelstein A. S., Cammarata R. C. (2000). Nanomaterials: Synthesis Properties and Applications. J.W. Arrowsmith Ltda, BristolGoogle Scholar
  2. 2.
    Klabunde K. J. (2001). Nanoscale Materials in Chemistry. Wiley-Interscience, New YorkGoogle Scholar
  3. 3.
    Roucoux A., Schulz J., Patin H. (2002). Chem. Rev. 102:3757CrossRefGoogle Scholar
  4. 4.
    Chistopher Love J., Estroff L. A., Kriebel J. K., Nuzzo R. G., Whitesides G. M. (2005). Chem. Rev. 105:1103CrossRefGoogle Scholar
  5. 5.
    Daniel M. C., Astruc D. (2004). Chem Rev. 104:293CrossRefGoogle Scholar
  6. 6.
    Hutching G. J., Hudson I. D., Timms D. G. (1994). Chem. Comm. 23:2717CrossRefGoogle Scholar
  7. 7.
    Vasovic D. D., Stajakovic D. R., Zee S. P. (1997). Mater. Res. Bull. 32:779CrossRefGoogle Scholar
  8. 8.
    E. J. Croop and C. H. Vondracek, U.S. Pat. No. 19630412, 1965Google Scholar
  9. 9.
    Levchik S. V., Wiel E. D. (2005). Polym. Int. 54:981CrossRefGoogle Scholar
  10. 10.
    Dachille F., Dent-Glasser L. (1959). Acta Crystallogr. 12:820CrossRefGoogle Scholar
  11. 11.
    Mackenzic J. D., Lroth W., Wentorf R. H. (1959). Acta Crystallogr. 12:79CrossRefGoogle Scholar
  12. 12.
    Ali A. F., Mustarelli P., Magistris A. (1998). Mater. Res. Bull. 33:697CrossRefGoogle Scholar
  13. 13.
    Baykal A., Kizilyalli M., Toprak M., Kniep R. (2001). Turk. J. Chem. 25:425Google Scholar
  14. 14.
    Schmidt M., Ewald B., Prots Y., Cardoso-Gil R., Armbrusterm M., Loa I., Zhang I., Zhiong H. X., Scharz V., Kniep R. (2004). Z. Anorg. Allg. Chem. 630:655CrossRefGoogle Scholar
  15. 15.
    Díaz C., Valenzuela M. L. (2006). Macromolecules 39:103CrossRefGoogle Scholar
  16. 16.
    Díaz C., Castillo P., Valenzuela M. L. (2005). J. Cluster. Science 16:515CrossRefGoogle Scholar
  17. 17.
    Díaz., Valenzuela M. L. (2006). J. Inorg. Organometal. Polym. Mater. 16:123CrossRefGoogle Scholar
  18. 18.
    C. Díaz and M. L.Valenzuela in Horizons in Polymer Research, R. K. Bregg, ed., Chapter 6 (Nova, Science Publisher, 2005).Google Scholar
  19. 19.
    A. G. Scopelianos, J. P. O’ Brien, and H. R. Allcock, J. Chem. Soc., Chem. Commun., 198 (1980)Google Scholar
  20. 20.
    Allcock H. R., Scopelianos A. G., O’Brien J. P., Bernheim M. Y. (1981). J. Am. Chem. Soc. 103:350CrossRefGoogle Scholar
  21. 21.
    Allcock H. R., Scopelianos A. G., Whittle R. R., Tollefson N. M. (1983). J. Am. Chem. Soc. 105 :1316CrossRefGoogle Scholar
  22. 22.
    Abizanda D., Crespo O., Gimeno M. C., Jimenez J., Laguna A. (2003). Chem. Eur. J. 9:3310CrossRefGoogle Scholar
  23. 23.
    Allcock H. R. (1972). Chem. Rev. 72:315CrossRefGoogle Scholar
  24. 24.
    Mujumdar A.N., Young S. G., Merker R. L., Magill J. H. (1990). Macromolecules 23:14CrossRefGoogle Scholar
  25. 25.
    Fein M. M., Grafstein D., Paustian J. E., Bobinski J., Lichstein B. Y., Mayes N., Schwartz N. N., Cohen M. S. (1963). Inorg. Chem. 2:1115CrossRefGoogle Scholar
  26. 26.
    Carriedo G. A., Fernández-Catuxo L., García-Álonso F. J., Gómez-Elipe P., González P. A. (1996). Macromolecules 29:5320CrossRefGoogle Scholar
  27. 27.
    O. Crespo, M. C. Gimeno, P. G. Jones, and A. Laguna, J. Chem. Soc., Dalton Trans. 4583 (1996)Google Scholar
  28. 28.
    Carriedo G. A., García-Alonso F. J., Gómez-Elipe P., González P. A., Marco C., Gomez M. A., Ellis G. (2000). J Appl. Polym. Sci. 77:568CrossRefGoogle Scholar
  29. 29.
    Carriedo G. A., García-Alonso F. J., García-Álvarez J. L., Díaz-Valenzuela C., Yutronic-Sáez N. (2002). Polyhedron 21:2587CrossRefGoogle Scholar
  30. 30.
    Y. T. Quian, Y. L. Gu, and J. Lu, in The Chemistry of Nanomaterials, Synthesis, Properties and Applications, Vol 2, C. N. Rao, A. Muller and A. K. Cheetham, eds. (Wiley-VCH, Weinheim, 2004), pp. 170–207.Google Scholar
  31. 31.
    Cheetham A. K., Day P. (1987). Solid State Chemistry: Techniques. Clarandom Press, Oxford, p 79Google Scholar
  32. 32.
    Cao G. (2004). Nanostructures and Nanomaterials Synthesis, Properties and Application. Imperial Colleges Press, London, p. 331Google Scholar
  33. 33.
    Guo X., Devi P. S., Ravi B. G., Parise J. B., Sampath S., Hanson J. C. (2004). Binny. J. Mater. Chem. 14:1288CrossRefGoogle Scholar
  34. 34.
    Leite E. R., Carreño N. L. V., Lango E., Pontes F. M., Barison A., Ferreira A. G., Maniette Y., Varela A. G. (2002). Chem. Mater. 14:3722CrossRefGoogle Scholar
  35. 35.
    Boxall D. L., Kenic E. A., Lukehart C. M. (2002). Chem. Mater. 14:1715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Carlos Díaz
    • 1
  • Domingo Abizanda
    • 2
  • Josefina Jiménez
    • 2
  • Antonio Laguna
    • 2
  • Maria Luisa Valenzuela
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of ChileSantiagoChile
  2. 2.Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de AragónUniversidad de Zaragoza-C.S.I.C.ZaragozaSpain

Personalised recommendations