Synthesis, Characterization and Optoelectronic Properties of Dimeric and Polymeric Metallaynes Derived from 3,6-Bis(buta-1,3-diynyl)-9-butylcarbazole

  • Li Liu
  • Wai-Yeung Wong
  • Suk-Yue Poon
  • Kok-Wai Cheah

A thermally stable platinum(II) polyyne polymer incorporating carbazole-based linking units, trans-[–Pt(PBu3)2C≡CC≡CRC≡CC≡C–] n (R = 9-butylcarbazole-3,6-diyl), was prepared by polycondensation polymerization of trans-[PtCl2(PBu3)2] with H–C≡CC≡CRC≡CC≡C–H. We report the optical absorption and photoluminescence spectra of this carbon-rich metallopolymer and compare its photophysics with its molecular dinuclear model complex trans-[Pt(Ph)(PEt3)2C≡CC≡CRC≡CC≡CPt(Ph)(PEt3)2] as well as the group 11 gold(I) congener, [(PPh3)AuC≡CC≡CRC≡CC≡CAu(PPh3)]. Characterization of the polymer and metal complexes was accomplished by FT-IR and NMR spectroscopies and FAB mass spectrometry. Our investigations showed that harvesting of the organic triplet emissions can be achieved by the heavy-atom effect of Pt and Au centers, which enables a very high efficiency of intersystem crossing from the S1 singlet excited state to the T1 triplet excited state. The influence of the metal and the C≡C chain length on the intersystem crossing rate and the spatial extent of singlet and triplet excitons is characterized. The present work indicates that high-energy triplet states intrinsically give more efficient phosphorescence in metal-containing diethynylcarbazole systems than in the corresponding bis(butadiynyl) congeners and can thus enhance the radiative decay pathway.


carbazole transition metal butadiyne polyyne phosphorescence 



Financial support from the Hong Kong Research Grants Council (HKBU 2022/03P) and Hong Kong Baptist University (FRG/03-04/II-69) is gratefully acknowledged.


  1. 1.
    (a) I. F. Perepichka, D. D. Mysyk, and N. I. Sokolov, in Current Trends in Polymer Photochemistry, N. S. Allen, M. Edge, I. R. Bellobono, and E. Selli, eds. (Ellis Horwood, New York, London, 1995), p. 318. (b) J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970), Chap. 7).Google Scholar
  2. 2.
    (a) P. Strohriegl and J. V. Grazulevicius, Adv. Mater. 14, 1439 (2002). (b) P. Kunda, K. R. Justin Thomas, J. T. Lin, Y.-T. Tao, and C.-H. Chien, Adv. Funct. Mater. 13, 445 (2003). (c) K. R. Justin Thomas, J. T. Lin, Y.-T. Tao, and C.-W. Ko, Adv. Mater. 12, 1949 (2000). (d) K. R. Justin Thomas, J. T. Lin, Y.-T. Tao, and C.-W. Ko, J. Am. Chem. Soc. 123, 9404 (2001). (e) F. Sanda, T. Nakai, N. Kobayashi, and T. Masuda, Macromolecules 37, 2703 (2004). (f) S. Maruyama, X.-T. Tao, H. Hokari, T. Noh, Y. Zhang, T. Wada, H. Sasabe, H. Suzuki, T. Watanabe, and S. Miyata, J. Mater. Chem. 9, 893 (1999). (g) J. Chung, B. Choi, and H. H. Lee, Appl. Phys. Lett. 74, 3645 (1999). (h) X. T. Tao, H. Suzuki, T. Wada, H. Saade, and S. Miyata, Appl. Phys. Lett. 75, 1655 (1999).Google Scholar
  3. 3.
    (a) B. Kippelen, A. Golemme, E. Hendrickx, J. F. Wang, S. R. Marder, and N. Peyghambarian, in Field Responsive Polymers: Electroresponsive, Photoresponsive, and Responsive Polymers in Chemistry and Biology, I. M. Khan and J. S. Harrison eds. (ACS Symposium Series 726, American Chemical Society, Washington D.C., USA, 1999), p. 204. (b) Y. Z. Wang and A. J. Epstein, Acc. Chem. Res. 32, 217 (1999).Google Scholar
  4. 4.
    (a) Y. Kuwabara, H. Ogawa, H. Inada, N. Noma, and Y. Shirota, Adv. Mater. 6, 677 (1994). (b) B. E. Koene, D. E. Loy, and M. E. Thompson, Chem. Mater. 10, 2235 (1998). (c) D. F. O’Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, and M. E. Thompson, Adv. Mater. 10, 1108 (1998).Google Scholar
  5. 5.
    Joule J. A., (1984) Adv. Heterocycl. Chem. 35: 83CrossRefGoogle Scholar
  6. 6.
    (a) F. L. Bai, M. Zheng, G. Yu, D. B. Zhu, Thin Solid Films 363, 118 (2000). (b) D. B. Romero, M. Schaer, M. Leclerc, D. Ades, A. Siove, and L. Zuppiroli, Synth. Met. 80, 271 (1996).Google Scholar
  7. 7.
    (a) B. J. Coe and N. R. M. Curati, Comment Inorg. Chem. 25, 147 (2004). (b) M. A. Baldo, M. E. Thompson, and S. R. Forrest, Pure Appl. Chem. 71, 2095 (1999).Google Scholar
  8. 8.
    (a) R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J.-L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999). (b) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998). (c) Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heeger, Nature 397, 414 (1999).Google Scholar
  9. 9.
    (a) A. Kimoto, J.-S. Cho, M. Higuchi, and K. Yamamoto, Macromolecules 37, 5531 (2004). (b) Z. Zhu and J. S. Moore, J. Org. Chem. 65, 116 (2000). (c) F. Sanda, T. Kawaguchi, and T. Masuda, Macromolecules 36, 2224 (2003). (d) C. Xia and R. C. Advincula, Macromolecules 34, 5854 (2001). (e) S. Maruyama, H. Hokari, T. Wada, and H. Sasabe, Synthesis 1794 (2001). (f) B. Z. Tang, H. Z. Chen, R. S. Xu, J. W. Y. Lam, K. K. L. Cheuk, H. N. C. Wong, and M. Wang, Chem. Mater. 12, 213 (2000). (g) Z. L. Xie, J. W. Y. Lam, C. F. Qiu, M. Wong, H. S. Kwok, and B. Z. Tang, Polym. Mater. Sci. Eng. 89, 416 (2003).Google Scholar
  10. 10.
    (a) W.-Y. Wong, Coord. Chem. Rev. 249, 971 (2005). (b) N. D. McClenaghan, R. Passalacqua, F. Loiseau, S. Campagna, B. Verheyde, A. Hameurlaine, and W. Dehaen, J. Am. Chem. Soc. 125, 5356 (2003). (c) A.-C. Ribou, T. Wada, and H. Saabe, Inorg. Chim. Acta 288, 134 (1999).Google Scholar
  11. 11.
    (a) C.-H. Tao, K. M.-C. Wong, N. Zhu, and V. W.-W. Yam, New J. Chem. 27, 150 (2003). (b) W.-Y. Wong, G.-L. Lu, K.-H. Choi, and J.-X. Shi, Macromolecules 35, 3506 (2002). (c) A. S. Abd-El-Aziz, C. E. Carraher, Jr., C. U. Pittman, Jr., J. E. Sheats, and M. Zeldin, Macromolecules Containing Metal and Metal-Like Elements (Wiley-Interscience, New Jersey, 2003), Vol. 1, Chap. 4, p. 158.Google Scholar
  12. 12.
    (a) W.-Y. Wong, C.-K. Wong, G.-L. Lu, A. W.-M. Lee, K.-W. Cheah, and J.-X. Shi, Macromolecules 36, 983 (2003). (b) W.-Y. Wong, L. Liu, S.-Y. Poon, A. W.-M. Lee, K.-W. Cheah, and J.-X. Shi, Macromolecules 37, 4496 (2004). (c) W.-Y. Wong, S.-Y. Poon, A. W.-M. Lee, J.-X. Shi, and K.-W. Cheah, Chem. Commun. 2420 (2004).Google Scholar
  13. 13.
    (a) W.-Y. Wong, J. Inorg. Organomet. Polym. Mater. 15, 197 (2005). (b) N. J. Long, Angew. Chem. Int. Ed. Engl. 34, 21 (1995). (c) A. S. Abd-El-Aziz, Macromol. Rapid Commun. 23, 995 (2002).Google Scholar
  14. 14.
    J. Chatt and B. L. Shaw, J. Chem. Soc. 4020 (1960).Google Scholar
  15. 15.
    J. Chatt and R. G. Hayter, J. Chem. Soc. Dalton Trans. 896 (1961).Google Scholar
  16. 16.
    (a) W. R. Dawson and M. W. Windsor, J. Phys. Chem. 72, 3251 (1968). (b) J. S. Wilson, N. Chawdhury, M. R. A. Al-Mandhary, M. Younus, M. S. Khan, P. R. Raithby, A. Köhler, and R. H. Friend, J. Am. Chem. Soc. 123, 9412 (2001).Google Scholar
  17. 17.
    SAINT+, ver. 6.02a, Bruker Analytical X-ray System, Inc. (Madison, Wisconsin, USA, 1998).Google Scholar
  18. 18.
    G. M. Sheldrick, SADABS, Empirical Absorption Correction Program, University of Göttingen, Germany (1997).Google Scholar
  19. 19.
    G. M. Sheldrick, SHELXTLTM, Reference Manual, ver. 5.1 (Madison, Wisconsin, USA 1997).Google Scholar
  20. 20.
    (a) N. Chawdhury, A. Köhler, R. H. Friend, W.-Y. Wong, J. Lewis, M. Younus, P. R. Raithby, T. C. Corcoran, M. R. A. Al-Mandhary, and M. S. Khan, J. Chem. Phys. 110, 4963 (1999). (b) M. Younus, A. Köhler, S. Cron, N. Chawdhury, M. R. A. Al-Mandhary, M. S. Khan, J. Lewis, N. J. Long, R. H. Friend, and P. R. Raithby, Angew. Chem. Int. Ed. 37, 3036 (1998). (c) W.-Y. Wong, S.-M. Chan, K.-H. Choi, K.-W. Cheah, and W.-K. Chan, Macromol. Rapid Commun. 21, 453 (2000). (d) W.-Y. Wong, K.-H. Choi, G.-L. Lu, Macromol. Rapid Commun. 22, 461 (2001).Google Scholar
  21. 21.
    (a) W.-Y. Wong, K.-H. Choi, G.-L. Lu, J.-X. Shi, P.-Y. Lai, S.-M. Chan, and Z. Lin, Organometallics 20, 5446 (2001). (b) B. Li, B. Ahrens, K.-H. Choi, M. S. Khan, P. R. Raithby, P. J. Wilson, and W.-Y. Wong, Cryst. Eng. Commun. 4, 405 (2002). (c) W.-Y. Wong, Comment Inorg. Chem. 26, 39 (2005). (d) R. J. Puddephatt, Coord. Chem. Rev. 216217, 313 (2001). (e) R. J. Puddephatt, Chem. Commun. 1055 (1998).Google Scholar
  22. 22.
    (a) U. H. F. Bunz, Chem. Rev. 100, 1605 (2000). (b) I. Manners, Synthetic Metal-Containing Polymers (Wiley-VCH, Weinheim, Germany, 2004), Chap. 5.Google Scholar
  23. 23.
    Chawdhury N., Köhler A., Friend R. H., Younus M., Long N. J., Raithby P. R., Lewis J., (1998) Macromolecules 31: 722CrossRefGoogle Scholar
  24. 24.
    (a) S. D. Cummings and R. Eisenberg, J. Am. Chem. Soc. 118, 1949 (1996). (b) N. J. Demas and G. A. Crosby, J. Am. Chem. Soc. 92, 7262 (1970).Google Scholar
  25. 25.
    N. J. Turro, Modern Molecular Photochemistry (University Science Books, Mill Valley, California, USA, 1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Li Liu
    • 1
    • 2
  • Wai-Yeung Wong
    • 2
  • Suk-Yue Poon
    • 2
  • Kok-Wai Cheah
    • 3
  1. 1.Faculty of Chemistry and Material ScienceHubei UniversityWuhanP.R. China
  2. 2.Department of Chemistry and Centre for Advanced Luminescence MaterialsHong Kong Baptist UniversityKowloon TongP.R. China
  3. 3.Department of Physics and Centre for Advanced Luminescence MaterialsHong Kong Baptist UniversityKowloon TongP.R. China

Personalised recommendations