Advertisement

The physical face of slums: a structural comparison of slums in Mumbai, India, based on remotely sensed data

  • H. Taubenböck
  • N. J. Kraff
Article

Abstract

The term “slum” is difficult to define, but if we see one, we know it. Definitions for slums are qualitative such as “areas of people lacking, for example, durable housing or easy access to safe water”. This study aims at identifying characteristic physical features of the built environment that allows defining slum areas based on quantitative and measurable parameters. In general, spatial data on slums are generalized, outdated, or even nonexistent. The bird’s eye view of remotely sensed data is capable to provide an independent, area-wide spatial overview, to capture the complex morphological pattern and at the same time capture the large-scale individual objects typical for slums. Using high-resolution optical satellite data, parameters such as building density, building heights, and sizes are used to differentiate between slums and formal settlements. From it, the physical features are used to analyze structural homogeneity and heterogeneities within and across slums and to suggest characteristic physical features for spatial slum delineation at three study sites in Mumbai, India.

Keywords

Slum (In)formal settlement Remote sensing Structural urban analysis Mumbai 

Notes

Acknowledgments

The authors would like to thank the Slum Rehabilitation Society in Mumbai, Raajesh Senha for additional information about the study sites, and Michael Wurm from the German Aerospace Center (DLR) for his support. Furthermore we would like to thank Digital Globe (European Space Imaging) for providing the high resolution optical data.

References

  1. Angeles, G., Lance, P., Barden-O’Fallon, J., Islam, N., Mahbub, A. Q. M., & Nazem, N. I. (2009). The 2005 census and mapping of slums in Bangladesh: Design, selected results and application. International Journal of Health Geographics, 8, 32. doi: 10.1186/1476-072x-8-32.
  2. Arimah, B. C. (2010). The face of urban poverty. United Nations University, UNU-WIDER. Working paper no. 2010/30. http://www.wider.unu.edu/stc/repec/pdfs/wp2010/wp2010-30.pdf.
  3. Asha, K. (2006). Urban slums in India—The myths and the reality. Asha-Seattle’s Quarterly Newsletter, 12(2), 1–3. http://data.ashanet.org/files/Chapters/Seattle/Newsletters/Newsletter-2006Q1.pdf.
  4. Bähr, J., & Mertins, G. (2000). Marginalviertel in Großstädten der Dritten Welt. Geographische Rundschau, 52(7–8), 19–26.Google Scholar
  5. Barros, F. M., & Sobreira, F. (2002). City of slums: Self-organisation across scales. CASA working papers series 2002, 55. Available online at www.casa.ucl.ac.uk.
  6. Barros, F. M., & Sobreira, F. (2005). Assessing texture pattern in slum across scales: an unsupervised approach. (CASA working papers 87). London: Centre for Advanced Spatial Analysis (UCL).Google Scholar
  7. Baud, I., Kuffer, M., Pfeffer, K., Sliuzas, R., & Karuppannan, S. (2010). Understanding heterogeneity in metropolitan India: The added value of remote sensing data for analyzing sub-standard residential areas. International Journal of Applied Earth Observation and Geoinformation, 12(5), 359–374.CrossRefGoogle Scholar
  8. Ebert, A., Kerle, N., & Stein, A. (2009). Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data. Natural Hazards, 48(2), 275–294.CrossRefGoogle Scholar
  9. Esch, T., Taubenböck, H., Roth, A., Heldens, W., Felbier, A., Thiel, M., et al. (2012). TanDEM-X mission: New perspectives for the inventory and monitoring of global settlement patterns. Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 6, 22.Google Scholar
  10. Fuchs, M. (2006). Slum als Projekt: Dharavi und die Falle der Marginalisierung. In R. Ahuja & C. Brosius (Eds.), Mumbai–Delhi–Kolkata. Annäherungen an die Megastädte Indiens (pp. 47–63). Heidelberg: Draupadi.Google Scholar
  11. Gunter, A. W. (2009). Getting it for free: Using Google earth™ and IL WIS to map squatter settlements in Johannesburg. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009 (Vol. 3, pp. III-388–III-391). 12–17 July 2009.Google Scholar
  12. Hofmann, P. (2001). Detecting informal settlements from IKONOS image data using methods of object oriented image analysis—An example from Cape Town (South Africa). In Proceedings of the 2nd international symposium remote sensing of urban areas (pp. 107–118). Regensburg, Germany, June 22–23, 2001.Google Scholar
  13. Hofmann, P., Strobl, J., Blaschke, T., & Kux, H. (2008). Detecting informal settlements from Quickbird data in Rio De Janeiro using an object based approach. Object-based Image Analysis, 23, 531–553.Google Scholar
  14. Hurskainen, P., & Pellikka, P. (2004). Change detection of informal settlements using multi-temporal aerial photographs? The case of Voi, SE-Kenya. In Proceedings of the 5th AARSE conference. Nairobi, Kenya.Google Scholar
  15. Indiastat. (2011). Revealing India statistically. http://www.indiastat.com/urbanareas.
  16. Jain, S. (2007). Use of IKONOS satellite data to identify informal settlements in Dehradun, India. International Journal of Remote Sensing, 28(15), 3227–3233.Google Scholar
  17. Joshi, P., Sen, S., & Hobson, J. (2002). Experiences with surveying and mapping Pune and Sangli slums on a geographical information system (GIS). Environment and Urbanization, 14, 225–240.Google Scholar
  18. Kamini, J., Satish, J., & Raghavswamy, V. (2006). Spatio-temporal analysis of land use in urban Mumbai using multi-sensor satellite data and Gis techniques. Journal of the Indian Society of Remote Sensing, 34(4), 385–396.CrossRefGoogle Scholar
  19. Kit, O., Lüdeke, M., & Rechien, D. (2012). Texture-based identification of urban slums in Hyderabad, India using remote sensing data. Applied Geography, 32(2), 660–667.CrossRefGoogle Scholar
  20. Kohli, D., Sliuzas, R., Kerle, N., & Stein, A. (2012). An ontology of slums for image-based classification. Computers, Environment and Urban Systems, 36, 154–163.Google Scholar
  21. Kuffer, M., & Barros, J. (2011). Urban morphology of unplanned settlements: The use of spatial metrics in VHR remotely sensed images. Procedia Environmental Sciences, 7(011), 152–157.CrossRefGoogle Scholar
  22. Lewis, C. (2011). Dharavi in Mumbai is no longer Asia’s largest slum. The Times of India. http://articles.timesofindia.indiatimes.com/2011-07-06/india/29742525_1_largest-slum-dharavi-nivara-hakk-sangharsh-samiti.
  23. Mayunga, S. D., Coleman, D. J., & Zhang, Y. (2007). A semi-automated approach for extracting buildings from QuickBird imagery applied to informal settlement mapping. International Journal of Remote Sensing, 28(10), 2343–2357.CrossRefGoogle Scholar
  24. Netzband, M., Banzhaf, E., Höfer, R., & Hannemann K (2009) Identifying the poor in cities—How can remote sensing help to profile slums in fast growing cities and megacities? IHDP Update, (1), 22–28 (ISSN 1727-155X).Google Scholar
  25. Netzband, M., & Rahman, A. (2009). Physical characterisation of deprivation in cities: How can remote sensing help to profile poverty (slum dwellers) in the megacity of Delhi/India. IEEE Urban Remote Sensing Event. doi: 10.1109/URS.2009.5137652 (ISBN no. 978-1-4244-3460-2).
  26. Niebergall, S., Loew, A., & Mauser, W. (2008). Integrative assessment of informal settlements using VHR remote sensing data—The Delhi case study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(3), 193–205.Google Scholar
  27. Nissel, H. (1977). Bombay. Untersuchungen zur Struktur und Dynamik einer indischen Metropole. In B. Hofmeister, & H. Valentin (Eds.), Berliner Geographische Studien. Berlin: Institut für Geographie der Technischen Universität Berlin.Google Scholar
  28. Nissel, H. (2006). Bombay/Mumbai: Stadterweiterung und Stadtumbau einer “Globalized City”. In R. Ahuja & C. Brosius (Eds.), Mumbai–Delhi–Kolkata. Annäherung an die Megastädte Indiens (pp. 19–34). Heidelberg: Draupadi.Google Scholar
  29. O’Hare, G., Abbott, D., & Barke, M. (1998). A review of slum housing policies in Mumbai. Cities, 15(4), 269–283.CrossRefGoogle Scholar
  30. OpenStreetMap Project. (2012). OpenStreetMap Community. Project support by OpenStreetMap Foundation, Created by Steve Coast. http://en.wikipedia.org/wiki/Open_street_map#cite_note-osm-wiki-faq-3.
  31. Pacific Disaster Center (Eds.). (2005). Mumbai, India. (Disaster Risk Management City Profiles). Kihei. http://www.pdc.org/emi/emihome.html.
  32. Richards, J. A., & Jia, X. (1999). Remote sensing digital analysis—An introduction (3rd ed.). Berlin: Springer. 464.CrossRefGoogle Scholar
  33. Risbud, N. (2003). The case of Mumbai, India. In UN-Habitat (Ed.), Mumbai, India. (Understanding Slums: Case Studies for the Global Report on Human Settlements 2003). London. http://www.ucl.ac.uk/dpu-projects/Global_Report/cities/mumbai.htm.
  34. Rüther, H., Martine, H. M., & Mtalo, E. G. (2002). Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas. ISPRS Journal of Photogrammetry & Remote Sensing, 56(2002), 269–282.CrossRefGoogle Scholar
  35. Schneider-Sliwa, R., & Bhatt, M. (Eds.), (2008). Recovering of Slums. Determinants of poverty and upward social mobility in urban slums. Case studies from India. Basel: Schwabe/Basel Development Studies. Google Scholar
  36. Schneider-Sliwa, R., & Meusburger, P. (2002). Slum. Lexikon der Geographie, Band 3 (p. 231). Heidelberg: Berlin Spektrum Akademischer Verlag.Google Scholar
  37. Schubert, D. (2009). Der größte Slum Asiens: Dharavi (Mumbai)—Von Fehlschlägen der „Sanierung“zum Modellprojekt? In Arbeitskreis Stadterneuerung und Institut für Stadt-und Regionalplanung (Eds.), Megacities und Stadterneuerung. Jahrbuch Stadterneuerung 2009 (pp. 99–114). Berlin: Universitätsverlag der TU Berlin.Google Scholar
  38. Singh, S. (2011). Redeveloping Dharavi, but which way? http://dharavi.org/.
  39. Singh, H. H., & Kumra, V. K. (1986). Slums: Threat to urban environment. In H. H. Singh et al. (Eds.), Geography and environment: Issues and challenges (pp. 113–138). New Delhi: Concept.Google Scholar
  40. Sirmacek, B., Taubenböck, H., Reinartz, P., & Ehlers, M. (2012). Evaluation of automatically generated three-dimensional city models derived from remotely sensed data. Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 5(1), 59–70.CrossRefGoogle Scholar
  41. Sliuzas, R., & Kuffer, M. (2008). Analysing the spatial heterogeneity of poverty using remote sensing: Typology of poverty areas using selected RS based indicators. In C. Jürgens (Ed.), Remote sensingNew challenges of high resolution. Bochum: The university of Bochum. http://www.earsel.org/workshops/HighRes2008/FullPapers.pdf.
  42. Sliuzas, R., Mboup, G., & de Sherbinin, A. (2008) Report of the expert group meeting on slum identification and mapping. Report by CIESIN, UN-Habitat, ITC, p. 36.Google Scholar
  43. Stang, F. (2002). Indien. Darmstadt: Wissenschaftliche Buchgesellschaft, p. 42.Google Scholar
  44. Stasolla, M., & Gamba, P. (2008). Spatial Indexes for the extraction of formal and informal human settlements from high-resolution SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1(2), 98–106.Google Scholar
  45. Stow, D., Lopez, A., Lippitt, C., Hinton, S., & Weeks, J. (2007). Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data. International Journal of Remote Sensing, 28(22), 5167–5173.CrossRefGoogle Scholar
  46. Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., & Dech, S. (2012). Monitoring of mega cities from space. Remote Sensing of Environment, 117, 162–176.CrossRefGoogle Scholar
  47. Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India—Spatiotemporal analysis using remote sensing data. Computers, Environment and Urban Systems, 33, 179–188. Google Scholar
  48. Taubenböck, H., Wurm, M., Setiadi, N., Gebert, N., Roth, A., Strunz, G., et al. (2009). Integrating remote sensing and social science—The correlation of urban morphology with socioeconomic parameters. Shanghai: JURSE. pp. 7.Google Scholar
  49. The Slum Areas Improvement and Clearance Act. (1956). http://www.karmayog.org/centralgovtacts/centralgovtacts_6385.htm.
  50. UN-Habitat. (2003a). Challenge of slums-global report on human settlements (Vol. 310). Nairobi: UN-Habitat.Google Scholar
  51. UN-Habitat. (2003b). Slums of the World: The face of urban poverty in the new millennium?. Nairobi: UN-Habitat.Google Scholar
  52. UN-Habitat. (2006). Slum upgrading facility. Volume 1 SUF Action Planning Methodology and Development Guidelines. http://www.unchs.org/pmss/listItemDetails.aspx?publicationID=2359.
  53. UN-Habitat (United Nations Centre for Human Settlements). (2002). Cities without slums. Nairobi. http://www.unhabitat.org/list.asp?typeid=48&catid=281&subMenuID=52.
  54. United Nations Department of Economic and Social Affairs. (2009). Population division. United Nations publications.Google Scholar
  55. Vaz, L. F., & Berenstein, J. P. (2004). Morphological diversity in the squatter settlements of Rio de Janeiro. In K. Stanilov & B. C. Scheer (Eds.), Suburban form: An international perspective (pp. 61–72). New York: Routledge.Google Scholar
  56. Weeks, J., Hill, A., Stow, D., Getis, A., & Fugate, D. (2007). Can we spot a neighborhood from the air? Defining neighborhood structure in Accra, Ghana. GeoJournal, 69(1), 9–22.Google Scholar
  57. Wurm, M., Taubenböck, H., & Dech, S. (2010). Quantification of urban structures on building block level utilizing multisensoral remote sensing data. Toulouse: SPIE Europe. pp 13.Google Scholar
  58. Wurm, M., Taubenböck, H., Schardt, M., Esch, T., & Dech, S. (2011). Object-based image information fusion using multisensor earth observation data over urban areas. International Journal of Image and Data Fusion, 2(2), 121–147.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)German Remote Sensing Data Center (DFD)WesslingGermany

Personalised recommendations