Skip to main content
Log in

An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The set of all nondominated solutions for a multi-objective integer programming (MOIP) problem is finite if the feasible region is bounded, and it may contain unsupported solutions. Finding these sets is NP-hard for most MOIP problems and current methods are unable to scale with the number of objectives. We propose a deterministic exact parallel algorithm for solving MOIP problems with any number of objectives. The proposed algorithm generates the full set of nondominated solutions based on intelligent iterative decomposition of the objective space utilizing a particular scalarization scheme. The algorithm relies on a set of rules that exploits regional dominance relations among the decomposed partitions for pruning. These expediting rules are both used as part of a pre-solve step as well as judiciously employed throughout the parallel running threads. Using an extensive test-bed of MOIP instances with three, four, five, and six objectives, the performance of the proposed algorithm is evaluated and compared with leading benchmark algorithms for MOIPs. Results of the experimental study demonstrate the effectiveness of the proposed algorithm and the computational advantage of its parallelism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbas, M., Chergui, M.E.A., Mehdi, M.A.: Efficient cuts for generating the non-dominated vectors for multiple objective integer linear programming. Int. J. Math. Oper. Res. 4(3), 302–316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boland, N., Charkhgard, H., Savelsbergh, M.: The quadrant shrinking method: a simple and efficient algorithm for solving tri-objective integer programs. Eur. J. Oper. Res. 260(3), 873–885 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dächert, K., Klamroth, K.: A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems. J. Glob. Optim. 61(4), 643–676 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dächert, K., Klamroth, K., Lacour, R., Vanderpooten, D.: Efficient computation of the search region in multi-objective optimization. Eur. J. Oper. Res. 260(3), 841–855 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34(9), 2674–2694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. IBM ILOG CPLEX Optimization Studio. http://www.ilog.com/products/cplex (2016)

  7. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kiziltan, G., Yucaoğlu, E.: An algorithm for multiobjective zero-one linear programming. Manag. Sci. 29(12), 1444–1453 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klamroth, K., Lacour, R., Vanderpooten, D.: On the representation of the search region in multi-objective optimization. Eur. J. Oper. Res. 245(3), 767–778 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lokman, B., Köksalan, M.: Finding all nondominated points of multi-objective integer programs. J. Glob. Optim. 57(2), 347–365 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mavrotas, G., Diakoulaki, D.: A branch and bound algorithm for mixed zero-one multiple objective linear programming. Eur. J. Oper. Res. 107(3), 530–541 (1998)

    Article  MATH  Google Scholar 

  13. Mavrotas, G., Diakoulaki, D.: Multi-criteria branch and bound: a vector maximization algorithm for mixed 0–1 multiple objective linear programming. Appl. Math. Comput. 171(1), 53–71 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Ozlen, M., Burton, B.A., MacRae, C.A.: Multi-objective integer programming: an improved recursive algorithm. J. Optim. Theory Appl. 160(2), 470–482 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS J. Comput. 22(3), 371–386 (2010a)

    Article  MathSciNet  MATH  Google Scholar 

  16. Przybylski, A., Gandibleux, X., Ehrgott, M.: A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives. Discrete Optim. 7(3), 149–165 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stidsen, T., Andersen, K.A., Dammann, B.: A branch and bound algorithm for a class of biobjective mixed integer programs. Manag. Sci. 60(4), 1009–1032 (2014)

    Article  Google Scholar 

  18. Sylva, J., Crema, A.: A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158(1), 46–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ulungu, B., Teghem, J., Fortemps, P.: Heuristic for multi-objective combinatorial optimization problems by simulated annealing. MCDM Theory Appl. 1995 (1995)

  20. Vincent, T., Seipp, F., Ruzika, S., Przybylski, A., Gandibleux, X.: Multiple objective branch and bound for mixed 0–1 linear programming: corrections and improvements for the biobjective case. Comput. Oper. Res. 40(1), 498–509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank to the Editor and three anonymous reviewers for their invaluable feedback, suggestions, and comments that helped greatly improve the content, presentation clarity, and exposition of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgu Turgut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turgut, O., Dalkiran, E. & Murat, A.E. An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems. J Glob Optim 75, 35–62 (2019). https://doi.org/10.1007/s10898-019-00778-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00778-x

Keywords

Navigation