Skip to main content
Log in

Trajectory optimization using quantum computing

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a framework wherein the trajectory optimization problem (or a problem involving calculus of variations) is formulated as a search problem in a discrete space. A distinctive feature of our work is the treatment of discretization of the optimization problem wherein we discretize not only independent variables (such as time) but also dependent variables. Our discretization scheme enables a reduction in computational cost through selection of coarse-grained states. It further facilitates the solution of the trajectory optimization problem via classical discrete search algorithms including deterministic and stochastic methods for obtaining a global optimum. This framework also allows us to efficiently use quantum computational algorithms for global trajectory optimization. We demonstrate that the discrete search problem can be solved by a variety of techniques including a deterministic exhaustive search in the physical space or the coefficient space, a randomized search algorithm, a quantum search algorithm or by employing a combination of randomized and quantum search algorithms depending on the nature of the problem. We illustrate our methods by solving some canonical problems in trajectory optimization. We also present a comparative study of the performances of different methods in solving our example problems. Finally, we make a case for using quantum search algorithms as they offer a quadratic speed-up in comparison to the traditional non-quantum algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bernoulli, J.: Problema Novum ad Cujus Solutionem Mathematici Invitantur. Acta Erud. 15, 264–269 (1696)

    Google Scholar 

  2. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193–207 (1998)

    Article  MATH  Google Scholar 

  3. Bliss, G.A.: Calculus of Variations. Mathematical Association of America Chicago, Chicago (1925)

    MATH  Google Scholar 

  4. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4–5), 493–506 (1998)

    Article  Google Scholar 

  5. Brooks, S.H.: A discussion of random methods for seeking maxima. Oper. Res. 6(2), 244–251 (1958)

    Article  Google Scholar 

  6. Bulger, D., Baritompa, W.P., Wood, G.R.: Implementing pure adaptive search with Grover’s quantum algorithm. J. Optim. Theory Appl. 116(3), 517–529 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bulger, D.W.: Combining a local search and Grover’s algorithm in black-box global optimization. J. Optim. Theory Appl. 133(3), 289–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowling, I.D., Whidborne, J.F., Cooke, A.K.: Optimal trajectory planning and LQR control for a quadrotor UAV. In: UKACC International Conference on Control (2006)

  9. Dürr, C., Høyer, P.: A Quantum Algorithm for Finding the Minimum. arXiv preprint arXiv:quant-ph/9607014 (1996)

  10. Elsgolc, L.D.: Calculus of Variations. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  11. Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 25(1), 160–166 (2002)

    Article  Google Scholar 

  12. Feynman, R.P.: The principle of least action in quantum mechanics. In: Brown, L.M. (ed.) Feynman’s Thesis—A New Approach To Quantum Theory, pp. 1–69. World Scientific (2005). https://doi.org/10.1142/5852

    Book  MATH  Google Scholar 

  13. Gelfand, I.M., Silverman, R.A., et al.: Calculus of Variations. Courier Corporation, North Chelmsford (2000)

    Google Scholar 

  14. Goldstein, H.: Classical Mechanics. Pearson Education India, New Delhi (2011)

    MATH  Google Scholar 

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

  16. Lara, P.C.S., Portugal, R., Lavor, C.: A new hybrid classical-quantum algorithm for continuous global optimization problems. J. Glob. Optim. 60(2), 317–331 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mureşan, M.: Soft landing on the moon with mathematica. Math. J 14, 14–16 (2012)

    Google Scholar 

  18. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Patel, N.R., Smith, R.L., Zabinsky, Z.B.: Pure adaptive search in Monte Carlo optimization. Math. Program. 43(1–3), 317–328 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rahman, Q.I., Schmeisser, G., et al.: Analytic Theory of Polynomials. Number 26. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  21. Rieffel, E.G., Polak, W.H.: Quantum Computing: A Gentle Introduction. MIT Press, Cambridge (2011)

    MATH  Google Scholar 

  22. Vanderbilt, D., Louie, S.G.: A Monte Carlo simulated annealing approach to optimization over continuous variables. J. Comput. Phys. 56(2), 259–271 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37(1), 357–373 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Woodhouse, R.: A Treatise of Isoperimetrical Problems, and the Calculus of Variations. J. Smith, Cambridge (1810)

    Google Scholar 

  25. Yanofsky, N.S., Mannucci, M.A., Mannucci, M.A.: Quantum Computing for Computer Scientists, vol. 20. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  26. Zabinsky, Z.B., Smith, R.L.: Pure adaptive search in global optimization. Math. Program. 53(1–3), 323–338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Vedula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Vedula, P. Trajectory optimization using quantum computing. J Glob Optim 75, 199–225 (2019). https://doi.org/10.1007/s10898-019-00754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00754-5

Keywords

Mathematics Subject Classification

Navigation