Journal of Global Optimization

, Volume 71, Issue 4, pp 691–716 | Cite as

Global optimization of MIQCPs with dynamic piecewise relaxations

  • Pedro A. Castillo Castillo
  • Pedro M. CastroEmail author
  • Vladimir Mahalec


We propose a new deterministic global optimization algorithm for solving mixed-integer bilinear programs. It relies on a two-stage decomposition strategy featuring mixed-integer linear programming relaxations to compute estimates of the global optimum, and constrained non-linear versions of the original non-convex mixed-integer nonlinear program to find feasible solutions. As an alternative to spatial branch-and-bound with bilinear envelopes, we use extensively piecewise relaxations for computing estimates and reducing variable domain through optimality-based bound tightening. The novelty is that the number of partitions, a critical tuning parameter affecting the quality of the relaxation and computational time, increases and decreases dynamically based on the computational requirements of the previous iteration. Specifically, the algorithm alternates between piecewise McCormick and normalized multiparametric disaggregation. When solving ten benchmark problems from the literature, we obtain the same or better optimality gaps than two commercial global optimization solvers.


Mixed-integer nonlinear programming Global optimization of quadratic programs with bilinear terms Piecewise linear relaxations Optimality-based bound tightening 



Support by Ontario Research Foundation, McMaster Advanced Control Consortium, and Fundação para a Ciência e Tecnologia (Projects IF/00781/2013 and UID/MAT/04561/2013), is gratefully appreciated.


  1. 1.
    Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52, 1027–1037 (2006)CrossRefGoogle Scholar
  2. 2.
    Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35, 876–892 (2011)CrossRefGoogle Scholar
  3. 3.
    Castro, P.M.: New MINLP formulation for the multiperiod pooling problem. AIChE J. 61, 3728–3738 (2015)CrossRefGoogle Scholar
  4. 4.
    Lotero, I., Trespalacios, F., Grossmann, I.E., Papageorgiou, D.J., Cheon, M.-S.: An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem. Comput. Chem. Eng. 87, 13–35 (2016)CrossRefGoogle Scholar
  5. 5.
    Quesada, I., Grossmann, I.E.: Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19, 1219–1242 (1995)CrossRefGoogle Scholar
  6. 6.
    Lee, S., Grossmann, I.E.: Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks. Comput. Chem. Eng. 27, 1557–1575 (2003)CrossRefGoogle Scholar
  7. 7.
    Faria, D.C., Bagajewicz, M.J.: Novel bound contraction procedure for global optimization of bilinear MINLP problems with applications to water management problems. Comput. Chem. Eng. 35, 446–455 (2011)CrossRefGoogle Scholar
  8. 8.
    Rubio-Castro, E., Ponce-Ortega, J.M., Serna-González, M., El-Halwagi, M.M., Pham, V.: Global optimization in property-based interplant water integration. AIChE J. 59, 813–833 (2013)CrossRefGoogle Scholar
  9. 9.
    Alnouri, S., Linke, P., El-Halwagi, M.M.: Spatially constrained interplant water network synthesis with water treatment options. In: Eden, M.R., Siirola, J.D.S., Towler, G.P. (eds.) Proceedings of the 8th International Conference on Foundations of Computer-Aided Process Design, pp. 237–242. Elsevier, Amsterdam (2014)Google Scholar
  10. 10.
    Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012)CrossRefGoogle Scholar
  11. 11.
    Koleva, M.N., Styan, C.A., Papageorgiou, L.G.: Optimisation approaches for the synthesis of water treatment plants. Comput. Chem. Eng. (2017)Google Scholar
  12. 12.
    Andrade, T., Ribas, G., Oliveira, F.: A strategy based on convex relaxation for solving the oil refinery operations planning problem. Ind. Eng. Chem. Res. 55, 144–155 (2016)CrossRefGoogle Scholar
  13. 13.
    Castillo Castillo, P., Castro, P.M., Mahalec, V.: Global optimization algorithm for large-scale refinery planning models with bilinear terms. Ind. Eng. Chem. Res. 56, 530–548 (2017)CrossRefGoogle Scholar
  14. 14.
    Castro, P.M., Grossmann, I.E.: Global optimal scheduling of crude oil blending operations with RTN continuous-time and multiparametric disaggregation. Ind. Eng. Chem. Res. 53, 15127–15145 (2014)CrossRefGoogle Scholar
  15. 15.
    Cerdá, J., Pautasso, P.C., Cafaro, D.C.: Efficient approach for scheduling crude oil operations in marine-access refineries. Ind. Eng. Chem. Res. 54, 8219–8238 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhao, Y., Wu, N., Li, Z., Qu, T.: A novel solution approach to a priority-slot-based continuous-time mixed integer nonlinear programming formulation for a crude-oil scheduling problem. Ind. Eng. Chem. Res. 55, 10955–10967 (2016)CrossRefGoogle Scholar
  17. 17.
    Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Hydro energy systems management in Portugal: profit-based evaluation of a mixed-integer nonlinear approach. Energy 36, 500–507 (2011)CrossRefGoogle Scholar
  18. 18.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (2013)zbMATHGoogle Scholar
  19. 19.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997)CrossRefGoogle Scholar
  21. 21.
    McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math. Program. 10, 147–175 (1976)CrossRefzbMATHGoogle Scholar
  22. 22.
    Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)CrossRefGoogle Scholar
  23. 23.
    Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Glob. Optim. 56, 917–937 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bergamini, M.L., Aguirre, P., Grossmann, I.: Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29, 1914–1933 (2005)CrossRefGoogle Scholar
  25. 25.
    Wicaksono, D.S., Karimi, I.A.: Piecewise MILP under- and overestimators for global optimization of bilinear programs. AIChE J. 54, 991–1008 (2008)CrossRefGoogle Scholar
  26. 26.
    Li, X., Chen, Y., Barton, P.I.: Nonconvex generalized benders decomposition with piecewise convex relaxations for global optimization of integrated process design and operation problems. Ind. Eng. Chem. Res. 51, 7287–7299 (2012)CrossRefGoogle Scholar
  27. 27.
    Castro, P.M.: Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng. 72, 300–311 (2015)CrossRefGoogle Scholar
  28. 28.
    Kolodziej, S., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57, 1039–1063 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Castro, P.M.: Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems. J. Glob. Optim. 64, 765–784 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Faria, D.C., Bagajewicz, M.J.: A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems. AIChE J. 58, 2320–2335 (2012)CrossRefGoogle Scholar
  31. 31.
    Castro, P.M.: Spatial branch-and-bound algorithm for MIQCPs featuring multiparametric disaggregation. Optim. Methods Softw. 32, 719–737 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Castro, P.M., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using networks. Comput. Chem. Eng. 52, 249–261 (2013)CrossRefGoogle Scholar
  33. 33.
    Castro, P.M., Grossmann, I.E.: Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems. J. Glob. Optim. 59, 277–306 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Nagarajan, H., Lu, M., Yamangil, E., Bent, R.: Tightening McCormick relaxations for nonlinear programs via dynamic multivariate partitioning. In: Rueher, M. (ed.) Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Toulouse, France, September 5–9, 2016, Proceedings, pp. 369–387. Springer, Cham (2016)CrossRefGoogle Scholar
  35. 35.
    Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124, 383–411 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. 130, 359–413 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57, 3–50 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Gleixner, A.M., Berthold, T., Müller, B., Weltge, S.: Three enhancements for optimization-based bound tightening. J. Glob. Optim. 67, 731–757 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebr. Discrete Methods 6, 466–486 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Atamturk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in solving integer programming problems. Eur. J. Oper. Res. 121, 40–55 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Centro de Matemática Aplicações Fundamentais e Investigação Operacional, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations