Journal of Global Optimization

, Volume 70, Issue 2, pp 309–327 | Cite as

New necessary and sufficient optimality conditions for strong bilevel programming problems

  • Abdelmalek Aboussoror
  • Samir Adly


In this paper we are interested in a strong bilevel programming problem (S). For such a problem, we establish necessary and sufficient global optimality conditions. Our investigation is based on the use of a regularization of problem (S) and some well-known global optimization tools. These optimality conditions are new in the literature and are expressed in terms of \(\max \)\(\min \) conditions with linked constraints.


Two-level optimization Convergence of multifunctions Reverse convex problems Global optimization tools 

Mathematics Subject Classification

91A65 90C31 90C26 



The authors are grateful to the anonymous referees for their valuable remarks and suggestions that improved the quality of the paper.


  1. 1.
    Aboussoror, A., Loridan, P.: Existence and approximation results involving regularized constrained Stackelberg problems. J. Math. Anal. Appl. 188, 101–117 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aboussoror, A., Loridan, P.: Strong–weak Stackelberg problems in finite dimensional spaces. Serdica Math. J. 21, 151–170 (1995)MathSciNetMATHGoogle Scholar
  3. 3.
    Aboussoror, A.: Weak bilevel programming problems: existence of solutions. Adv. Math. Res. 1, 83–92 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Aboussoror, A., Mansouri, A.: Weak linear bilevel programming problems: existence of solutions via a penalty method. J. Math. Anal. Appl. 304, 399–408 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aboussoror, A., Ankhili, Z., Mansouri, A.: Bilevel programs: approximation results involving reverse convex programs. Pac. J. Optim. 4, 279–291 (2005)MathSciNetMATHGoogle Scholar
  6. 6.
    Aboussoror, A., Adly, S., Saissi, F.E.: Strong–weak nonlinear bilevel problems: existence of solutions in a sequential setting. J. Set-Valued Var. Anal. 25(1), 113–132 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-Linear Parametric Optimization. Birkhäuser, Basel (1983)MATHGoogle Scholar
  8. 8.
    Breton, B., Alj, A., Haurie, A.: Sequential Stackelberg equilibria in two-person games. J. Optim. Theory Appl. 29, 71–94 (1988)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dempe, S., Dutta, J., Mordukhovich, B.S.: New necessary optimality conditions in optimistic bilevel programming. Optimization 56, 577–604 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dempe, S., Gadhi, N.: Second order optimality conditions for bilevel set optimization problems. J. Glob. Optim. 47, 233–245 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dempe, S., Zemkoho, A.B.: The generalized Mangasarian–Fromowitz constraint qualifications and optimality conditions for bilevel programs. J. Optim. Theory Appl. 148(1), 46–68 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Falk, J.E.: A linear \(\max \)\(\min \) problem. Math. Program. 5, 169–188 (1973)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kuratowski, K.: Topology I. Academic Press, New York (1976)MATHGoogle Scholar
  14. 14.
    Leitmann, G.: On generalized Stackelberg strategies. J. Optim. Theory Appl. 26, 637–643 (1978)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lignola, M.B., Morgan, J.: Topological existence and stability for \(\min \)-\(\sup \) problems. J. Math. Anal. Appl. 151, 164–180 (1990)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lignola, M.B., Morgan, J.: Stability of regularized bilevel propgramming problems. J. Optim. Theory Appl. 93, 575–596 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Loridan, P., Morgan, J.: On strict \(\epsilon \)-solutions for a two level optimization problem. In: Buhler, W., Feichtinger, G., Hartl, F., Radermacher, F.J., Stahly, P. (eds.) Operation Research Proceedings, International Conference on Operations Research 90, Vienna, pp. 165–172. Springer, Berlin (1992)Google Scholar
  18. 18.
    Lucchetti, R., Mignanego, F., Pieri, G.: Existence theorems of equilibrium points in Stackelberg games with constraints. Optimization 18, 857–866 (1987)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Outrata, J.V.: A note on the usage of nondifferentiable exact penalties in some special optimization problems. Kybernetika 24(4), 251–258 (1988)MathSciNetMATHGoogle Scholar
  20. 20.
    Outrata, J.V.: On the numerical solution of a class of Stackelberg problems. ZOR-Math. Methods Oper. Res. 34, 255–277 (1990)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefMATHGoogle Scholar
  22. 22.
    Shimizu, K., Aiyoshi, E.: Necessary conditions for \(\min \)\(\max \) problems and algorithms by a relaxation procedure. IEEE Trans. Autom. Control 25(1), 62–66 (1980)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Kluwer Academic Publishers, Boston (1997)CrossRefMATHGoogle Scholar
  24. 24.
    Tuy, H.: Convex programs with additional reverse convex constraint. J. Optim. Theory Appl. 52, 463–486 (1987)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Tuy, H., Thuong, N.V.: On the global minimization of a convex function under general nonconvex constraints. Appl. Math. Optim. 18, 119–142 (1988)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ye, J.J., Zhu, D.L.: New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches. SIAM J. Optim. 20, 1885–1905 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire LMC, Faculté Polydisciplinaire de SafiUniversité Cadi AyyadSidi BouzidMorocco
  2. 2.Laboratoire XLIM, Faculté des Sciences et TechniquesUMR-CNRS 6172Limoges CedexFrance

Personalised recommendations