Journal of Global Optimization

, Volume 70, Issue 4, pp 707–718

# How to project onto extended second order cones

Article

## Abstract

The extended second order cones were introduced by Németh and Zhang (J Optim Theory Appl 168(3):756–768, 2016) for solving mixed complementarity problems and variational inequalities on cylinders. Sznajder (J Glob Optim 66(3):585–593, 2016) determined the automorphism groups and the Lyapunov or bilinearity ranks of these cones. Németh and Zhang (Positive operators of extended Lorentz cones, 2016. arXiv:1608.07455v2) found both necessary conditions and sufficient conditions for a linear operator to be a positive operator of an extended second order cone. In this note we give formulas for projecting onto the extended second order cones. In the most general case the formula depends on a piecewise linear equation for one real variable which is solved by using numerical methods.

## Keywords

Semi-smooth equation Extended second order cone Metric projection Piecewise linear Newton method

## References

1. 1.
Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95(1), 3–51 (2003)
2. 2.
Barrios, J.G., Bello Cruz, J.Y., Ferreira, O.P., Németh, S.Z.: A semi-smooth Newton method for a special piecewise linear system with application to positively constrained convex quadratic programming. J. Comput. Appl. Math. 301, 91–100 (2016)
3. 3.
Bello Cruz, J.Y., Ferreira, O.P., Németh, S., Prudente, L.F.: A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone. Linear Algebra Appl. 513, 160–181 (2017)
4. 4.
Chen, J.S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. Ser. B 104(2–3), 293–327 (2005)
5. 5.
Chi, C.Y., Li, W.C., Lin, C.H.: Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications. CRC Press, Boca Raton (2017)
6. 6.
Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (2001/02)Google Scholar
7. 7.
Gajardo, P., Seeger, A.: Equilibrium problems involving the Lorentz cone. J. Glob. Optim. 58(2), 321–340 (2014)
8. 8.
Gazi, O.: Understanding Digital Signal Processing, Springer Topics in Signal Processing, vol. 13. Springer, Singapore (2018)
9. 9.
Gowda, M.S., Tao, J.: On the bilinearity rank of a proper cone and Lyapunov-like transformations. Math. Program. Ser. A 147(1–2), 155–170 (2014)
10. 10.
Gowda, M.S., Trott, D.: On the irreducibility, Lyapunov rank, and automorphisms of special Bishop–Phelps cones. J. Math. Anal. Appl. 419(1), 172–184 (2014)
11. 11.
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. I. Fundamentals, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305. Springer, Berlin (1993)
12. 12.
Ko, C.H., Chen, J.S., Yang, C.Y.: Recurrent neural networks for solving second-order cone programs. Neurocomputing 74, 3464–3653 (2011)
13. 13.
Kong, L., Xiu, N., Han, J.: The solution set structure of monotone linear complementarity problems over second-order cone. Oper. Res. Lett. 36(1), 71–76 (2008)
14. 14.
Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)
15. 15.
Luo, G.M., An, X., Xia, J.Y.: Robust optimization with applications to game theory. Appl. Anal. 88(8), 1183–1195 (2009)
16. 16.
Malik, M., Mohan, S.R.: On Q and R$$_0$$ properties of a quadratic representation in linear complementarity problems over the second-order cone. Linear Algebra Appl. 397, 85–97 (2005)
17. 17.
Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. Cowles Foundation for Research in Economics at Yale University, Monograph 16. Wiley, New York; Chapman & Hall, London (1959)Google Scholar
18. 18.
Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Paris 255, 238–240 (1962)
19. 19.
Németh, S., Zhang, G.: Positive operators of extended Lorentz cones. arXiv:1608.07455v2 (2016)
20. 20.
Németh, S.Z., Zhang, G.: Extended Lorentz cones and mixed complementarity problems. J. Glob. Optim. 62(3), 443–457 (2015)
21. 21.
Németh, S.Z., Zhang, G.: Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl. 168(3), 756–768 (2016)
22. 22.
Nishimura, R., Hayashi, S., Fukushima, M.: Robust Nash equilibria in $$N$$-person non-cooperative games: uniqueness and reformulation. Pac. J. Optim. 5(2), 237–259 (2009)
23. 23.
Orlitzky, M., Gowda, M.S.: An improved bound for the Lyapunov rank of a proper cone. Optim. Lett. 10(1), 11–17 (2016)
24. 24.
Rudolf, G., Noyan, N., Papp, D., Alizadeh, F.: Bilinear optimality constraints for the cone of positive polynomials. Math. Program. Ser. B 129(1), 5–31 (2011)
25. 25.
Sznajder, R.: The Lyapunov rank of extended second order cones. J. Glob. Optim. 66(3), 585–593 (2016)
26. 26.
Trott, D.W.: Topheavy and special Bishop–Phelps cones, Lyapunov rank, and related topics. ProQuest LLC, Ann Arbor (2014). Thesis (Ph.D.), University of Maryland, Baltimore CountyGoogle Scholar
27. 27.
Ye, K., Parpas, P., Rustem, B.: Robust portfolio optimization: a conic programming approach. Comput. Optim. Appl. 52(2), 463–481 (2012)
28. 28.
Yonekura, K., Kanno, Y.: Second-order cone programming with warm start for elastoplastic analysis with von Mises yield criterion. Optim. Eng. 13(2), 181–218 (2012)
29. 29.
Zhang, L.L., Li, J.Y., Zhang, H.W., Pan, S.H.: A second order cone complementarity approach for the numerical solution of elastoplasticity problems. Comput. Mech. 51(1), 1–18 (2013)