Journal of Global Optimization

, Volume 65, Issue 1, pp 41–56 | Cite as

Generalized subdifferentials of the sign change counting function



The counting function on binary values is extended to the signed case in order to count the number of transitions between contiguous locations. A generalized subdifferential for this sign change counting function is given where classical subdifferentials remain intractable. An attempt to prove global optimality at some point, for the 4-dimensional first non trivial example, is made by using a sufficient condition specially tailored among all the cases for this subdifferential.


Sign counting Generalized subdifferential Optimality conditions 


  1. 1.
    Carrasco-Olivera, D., Flores-Bazán, F.: On the representation of approximate subdifferentials for a class of generalized convex functions. Set Valued Anal. 13(2), 151–166 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Elkadi, M., Mourrain, B.: Some Applications of Bezoutians in Effective Algebraic Geometry. Technical Report RR-3572, INRIA, Dec 1998Google Scholar
  3. 3.
    Flores-Bazán, F.: On minima of the difference of functions. J. Optim. Theory Appl. 93(3), 525–531 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fortin, D., Tseveendorj, I.: \(Q\)-subdifferential and \(Q\)-conjugate for global optimality. Comput. Math. Math. Phys. 54(2), 265–274 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hiriart-Urruty, J.-B., Lewis, A.S.: The Clarke and Michel-Penot subdifferentials of the eigenvalues of a symmetric matrix. Comput. Optim. Appl. 13(1–3), 13–23 (1999). Computational optimization—a tribute to Olvi Mangasarian, Part IIMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hiriart-Urruty, J.-B., Le, H.Y.: Convexifying the set of matrices of bounded rank: applications to the quasiconvexification and convexification of the rank function. Optim. Lett. 6(5), 841–849 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jeyakumar, V., Rubinov, A.M., Wu, Z.Y.: Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions. Math. Program. 110(3, Ser. A), 521–541 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Le, H.Y.: Generalized subdifferentials of the rank function. Optim. Lett. 7(4), 731–743 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lewis, A.S.: Nonsmooth analysis of eigenvalues. Math. Program. 84(1, Ser. A), 1–24 (1999)MathSciNetMATHGoogle Scholar
  10. 10.
    Lewis, A.S., Sendov, H.S.: Nonsmooth analysis of singular values. I. Theory. Set Valued Anal. 13(3), 213–241 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lewis, A.S., Sendov, H.S.: Nonsmooth analysis of singular values. II. Applications. Set Valued Anal. 13(3), 243–264 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rubinov, A.M., Wu, Z.Y.: Optimality conditions in global optimization and their applications. Math. Program. 120(1, Ser. B), 101–123 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rubinov, A.: Abstract Convexity and Global Optimization, Volume of 44 Nonconvex Optimization and Its Applications. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  14. 14.
    Tsevendorj, I.: Piecewise-convex maximization problems: global optimality conditions. J. Glob. Optim. 21(1), 1–14 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Wu, Z.Y., Jeyakumar, V., Rubinov, A.M.: Sufficient conditions for global optimality of bivalent nonconvex quadratic programs with inequality constraints. J. Optim. Theory Appl. 133(1), 123–130 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wu, Z.Y., Rubinov, A.M.: Global optimality conditions for some classes of optimization problems. J. Optim. Theory Appl. 145(1), 164–185 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.InriaLe Chesnay CedexFrance
  2. 2.Laboratoire PRiSMUniversité de VersaillesVersailles CedexFrance

Personalised recommendations