Advertisement

Journal of Global Optimization

, Volume 61, Issue 4, pp 677–694 | Cite as

A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization

  • Zhiwei Feng
  • Qingbin Zhang
  • Qingfu Zhang
  • Qiangang Tang
  • Tao Yang
  • Yang Ma
Article

Abstract

In many engineering optimization problems, objective function evaluations can be extremely computationally expensive. The effective global optimization (EGO) is a widely used approach for expensive optimization. Balance between global exploration and local exploitation is a very important issue in designing EGO-like algorithms. This paper proposes a multiobjective optimization based EGO (EGO-MO) for addressing this issue. In EGO-MO, a global surrogate model for the objective function is firstly constructed using some initial database of designs. Then, a multiobjective optimization problem (MOP) is formulated, in which two objectives measure the global exploration and local exploitation. At each generation, the multiobjective evolutionary algorithm based on decomposition is used for solving the MOP. Several solutions selected from the obtained Pareto front are evaluated. In such a way, it can generate multiple test solutions simultaneously to take the advantage of parallel computing and reduce the computational time. Numerical experiments on a suite of test problems have shown that EGO-MO outperforms EGO in terms of iteration numbers.

Keywords

Expensive optimization Gaussian stochastic processes   Efficient global optimization Multiobjective optimization MOEA/D 

Notes

Acknowledgments

The authors thank the associate editor for his very helpful and constructive comments, which have helped to improve the quality of this paper significantly. This research was supported by the National Natural Science Foundation of China under the Grant of 11272345 and 51375486.

References

  1. 1.
    Chang, P.C., Chen, S.H., Zhang, Q., Lin, J.L.: MOEA/D for flowshop scheduling problems. Paper presented at the IEEE Congress on Evolutionary Computation, CEC 2008 (2008)Google Scholar
  2. 2.
    Feng, Z., Zhang, Q., Tang, Q., Yang, T., Ge, J.: Control-structure integrated multiobjective design for flexible spacecraft using MOEA/D. Struct. Multidiscip. Optim. (2014). doi: 10.1007/s00158-014-1053-7
  3. 3.
    Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)CrossRefGoogle Scholar
  4. 4.
    Gutmann, H.M.: A radial basis function method for global optimization. J. Glob. Optim. 19(3), 201–227 (2001)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Han, Z.-H., Görtz, S.: Hierarchical Kriging model for variable-fidelity surrogate modeling. AIAA J. 50(9), 1885–1896 (2012)CrossRefGoogle Scholar
  6. 6.
    Jeong, S., Suzuki, K., Obayashi, S., Kurita, M.: Optimization of nonlinear lateral characteristic of lifting-body type reentry vehicle. J. Aerosp. Comput. Inf. Commun. 6(3), 239–255 (2009)CrossRefGoogle Scholar
  7. 7.
    Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)CrossRefMATHGoogle Scholar
  8. 8.
    Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Keane, A.J.: Cokriging for robust design optimization. AIAA J. 50(11), 2351–2364 (2012)CrossRefGoogle Scholar
  10. 10.
    Koziel, S., Leifsson, L.: Surrogate-based aerodynamic shape optimization by variable-resolution models. AIAA J. 51(1), 94–106 (2013)CrossRefGoogle Scholar
  11. 11.
    Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)CrossRefGoogle Scholar
  12. 12.
    Mei, Y., Tang, K., Yao, X.: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Trans. Evol. Comput. 15(2), 151–165 (2011). doi: 10.1109/TEVC.2010.2051446 CrossRefGoogle Scholar
  13. 13.
    Miettinen, K.M.: Nonlinear Multiobject. Optim. Kluwer, Norwell, MA (1999)Google Scholar
  14. 14.
    Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Dixon, L.C.W., Szego, G.P. (eds.) Toward Glob. Optim., vol. 2, pp. 117–129. Elsevier, Amsterdam (1978)Google Scholar
  15. 15.
    Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plan. Inference 43, 381–402 (1995)CrossRefMATHGoogle Scholar
  16. 16.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution algorithms. In: Differential Evolution: A Practical Approach to Global Optimization, pp. 37–47. Springer, New York (2005)Google Scholar
  17. 17.
    Rumpfkeil, M.P.: Optimizations under uncertainty using gradients, Hessians, and surrogate models. AIAA J. 51(2), 444–451 (2013)CrossRefGoogle Scholar
  18. 18.
    Sasaki, D., Obayashi. S., Sawada, K., Himen, R.: Multiobjective aerodynamic optimization of supersonic wings using Navier-Stokes equations. Paper presented at the European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, Spain (2000)Google Scholar
  19. 19.
    Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34, 263–278 (2002)CrossRefGoogle Scholar
  20. 20.
    Schonlau, M.: Computer Experiments and Global Optimization. University of Waterloo, Waterloo (1997)Google Scholar
  21. 21.
    Simpson, T.W., Peplinsk, J.D., Koch, P.N.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. 17(2), 129–150 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Sobester, A., Leary, S.J., Keane, A.J.: On the design of optimization strategies based on global response surface approximation models. J. Glob. Optim. 33, 31–59 (2005)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)CrossRefGoogle Scholar
  24. 24.
    Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhiwei Feng
    • 1
  • Qingbin Zhang
    • 1
  • Qingfu Zhang
    • 2
    • 3
  • Qiangang Tang
    • 1
  • Tao Yang
    • 1
  • Yang Ma
    • 1
  1. 1.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaPeople’s Republic of China
  2. 2.Department of Computer ScienceCity University of Hong KongKowloonHong Kong
  3. 3.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations