Advertisement

Journal of Global Optimization

, Volume 61, Issue 2, pp 291–310 | Cite as

Exact solution approach for a class of nonlinear bilevel knapsack problems

  • Behdad Beheshti
  • Osman Y. Özaltın
  • M. Hosein Zare
  • Oleg A. Prokopyev
Article

Abstract

We study a class of nonlinear bilevel knapsack problems. The upper-level objective is a nonlinear integer function of both the leader’s and the follower’s decision variables. At the lower level the follower solves a linear binary knapsack problem, where the right-hand side of the knapsack constraint depends on the resource allocated by the leader. After discussing computational complexity issues, we propose an exact solution approach using an equivalent single-level value function reformulation. Extensive computational experiments are performed with quadratic and fractional binary objective functions.

Keywords

Bilevel programming Integer programming Value functions  Knapsack problem 

Notes

Acknowledgments

O.Y. Özaltın was supported by Natural Sciences and Engineering Research Council of Canada. The other three authors were partially supported by AFOSR Grant FA9550-08-1-0268, NSF Grant CMMI-0825993 and DoD DURIP Grant FA2386-12-1-3032. O.A. Prokopyev was also supported by US Air Force Summer Faculty Fellowship. In addition, we are grateful to Gabriel L. Zenarosa, Austin L. Buchanan and two anonymous reviewers for their helpful comments.

References

  1. 1.
    Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0–1 programming problems. J. Optim. Theory Appl. 93(2), 273–300 (1997)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bard, J.F.: Practical bilevel optimization: algorithms and applications. Nonconvex optimization and its applications. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  3. 3.
    Beheshti, B.: Test instances for nonlinear bilevel knapsack problem. Available at http://www.pitt.edu/~droleg/files/NBKP.html. Accessed on 31 March 2014
  4. 4.
    Blair, C.: Sensitivity analysis for knapsack problems: a negative result. Discrete Appl. Math. 81(1), 133–139 (1998)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123(1), 155–225 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Brotcorne, L., Hanafi, S., Mansi, R.: One-level reformulation of the bilevel knapsack problem using dynamic programming. Discrete Optim. 10(1), 1–10 (2013)Google Scholar
  7. 7.
    Brotcorne, L., Hanafi, S., Mansi, R.: A dynamic programming algorithm for the bilevel knapsack problem. Ope. Res. Lett. 37(3), 215–218 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: A complexity and approximability study of the bilevel knapsack problem. In: Integer programming and combinatorial optimization, pp. 98–109. Springer, Berlin (2013)Google Scholar
  9. 9.
    Cassidy, R.G., Kirby, M.J.L., Raike, W.M.: Efficient distribution of resources through three levels of government. Manag. Sci. 17(8), B-462–B-473 (1971)CrossRefGoogle Scholar
  10. 10.
    Côté, J.-P., Savard, G.: A bilevel modeling approach to pricing and fare optimization in the airline industry. J. Revenue Pricing Manag. 2, 23–26 (2003)CrossRefGoogle Scholar
  11. 11.
    Chiou, S.-W.: Bilevel programming for the continuous transport network design problem. Transp. Res. Part B 39(4), 361–383 (2005)CrossRefGoogle Scholar
  12. 12.
    Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Dempe, S.: Foundations of Bilevel Programming. Kluwer, Dordrecht (2002)MATHGoogle Scholar
  14. 14.
    Dempe, S., Richter, K.: Bilevel programming with knapsack constraints. CEJOR 8(2), 93–107 (2000)MATHMathSciNetGoogle Scholar
  15. 15.
    Deng, X.: Complexity issues in bilevel linear programming. In: Migdalas, A., Pardalos, P.M., Varbrand, P. (eds.) Multilevel Optimization: Algorithms and Applications, pp. 149–164. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  16. 16.
    Gallo, G., Hammer, P.L., Simeone, B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)MATHMathSciNetGoogle Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)MATHGoogle Scholar
  18. 18.
    Hansen, P., Poggi de Aragão, M.V., Ribeiro, C.C.: Hyperbolic 0–1 programming and query optimization in information retrieval. Math. Program. 52(1), 255–263 (1991)CrossRefMATHGoogle Scholar
  19. 19.
    Keçici, S., Aras, N., Verter, V.: Incorporating the threat of terrorist attacks in the design of public service facility networks. Optim. Lett. 6(6), 1101–1121 (2012)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Kong, N., Schaefer, A.J., Hunsaker, B.: Two-stage integer programs with stochastic right-hand sides: a superadditive dual approach. Math. Program. 108(2), 275–296 (2006)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Mansi, R., Alves, C., Valério de Carvalho, J.M. Hanafi, S.: An exact algorithm for bilevel 0–1 knapsack problems. Math. Probl. Eng. (2012) http://www.hindawi.com/journals/mpe/2012/504713/abs/
  23. 23.
    Mansi, R., Hanafi, S., Brotcorne, L.: Integer programming formulation of the bilevel knapsack problem. Math. Model. Nat. Phenom. 5(7), 116–121 (2010)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990)MATHGoogle Scholar
  25. 25.
    Migdalas, A., Pardalos, P.M., Värbrand, P.: Multilevel Optimization: Algorithms and Applications. Kluwer, Dordrecht (1998)CrossRefMATHGoogle Scholar
  26. 26.
    Özaltın, O.Y., Prokopyev, O.A., Schaefer, A.J.: The bilevel knapsack problem with stochastic right-hand sides. Oper. Res. Lett. 38(4), 328–333 (2010)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Özaltın, O.Y., Prokopyev, O.A., Schaefer, A.J.: Two-stage quadratic integer programs with stochastic right-hand sides. Math. Program. 133(1–2), 121–158 (2012)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Pardalos, P.M., Jha, S.: Complexity of uniqueness and local search in quadratic 0–1 programming. Oper. Res. Lett. 11(2), 119–123 (1992)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Pardalos, P.M., Schnitger, G.: Checking local optimality in constrained quadratic programming is NP-hard. Oper. Res. Lett. 7(1), 33–35 (1988)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Pisinger, D.: The quadratic knapsack problem—a survey. Discrete Appl. Math. 155(5), 623–648 (2007)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Behdad Beheshti
    • 1
  • Osman Y. Özaltın
    • 2
  • M. Hosein Zare
    • 1
  • Oleg A. Prokopyev
    • 1
  1. 1.Department of Industrial EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Edward P. Fitts Department of Industrial and Systems EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations