Skip to main content

Advertisement

Log in

Matrix-power energy-landscape transformation for finding NP-hard spin-glass ground states

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A method for solving binary optimization problems was proposed by Karandashev and Kryzhanovsky that can be used for finding ground states of spin glass models. By taking a power of the bond matrix the energy landscape of the system is transformed in such a way, that the global minimum should become easier to find. In this paper we test the combination of the new approach with various algorithms, namely simple random search, a cluster algorithm by Houdayer and Martin, and the common approach of parallel tempering. We apply these approaches to find ground states of the three-dimensional Edwards–Anderson model, which is an NP-hard problem, hence computationally challenging. To investigate whether the power-matrix approach is useful for such hard problems, we use previously computed ground states of this model for systems of size \(10^3\) spins. In particular we try to estimate the difference in needed computation time compared to plain parallel tempering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Binder, K., Young, A.: Spin-glasses: experimental facts, theoretical concepts and open questions. Rev. Mod. Phys. 58, 801 (1986)

    Article  Google Scholar 

  2. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  3. Young, A.P. (ed.): Spin Glasses and Random Fields. World Scientific, Singapore (1998)

    Google Scholar 

  4. Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  5. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241 (1982)

    Article  MathSciNet  Google Scholar 

  6. Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57(21), 2607–2609 (1986)

    Article  MathSciNet  Google Scholar 

  7. Hartmann, A.K.: Cluster-exact approximation of spin glass ground states. Phys. A 224, 480–488 (1999)

    Article  Google Scholar 

  8. Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65(6), 1604–1608 (1996)

    Article  Google Scholar 

  9. Hartmann, A.K.: Scaling of stiffness energy for three-dimensional \(\pm \)J Ising spin glasses. Phys. Rev. E 59, 84 (1999)

    Article  Google Scholar 

  10. Hartmann, A.K.: Calculation of ground states of four-dimensional \(\pm \)J Ising spin glasses. Phys. Rev. E 60(5), 5135 (1999)

    Article  Google Scholar 

  11. Wang, F., Landau, D.P.: Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64(5), 056101 (2001)

    Article  Google Scholar 

  12. Houdayer, J., Martin, O.C.: Hierarchical approach for computing spin glass ground states. Phys. Rev. E 64(5), 056704 (2001)

    Article  Google Scholar 

  13. Hartmann, A.K., Rieger, H.: Optimization Algorithms in Physics. Wiley-VCH, Weinheim (2001)

    Book  Google Scholar 

  14. Belletti, F., Cotallo, M., Cruz, A., Fernandez, L.A., Gordillo-Guerrero, A., Guidetti, M., Maiorano, A., Mantovani, F., Marinari, E., Martin-Mayor, V., Muñoz-Sudupe, A., Navarro, D., Parisi, G., Perez-Gaviro, S., Rossi, M., Ruiz-Lorenzo, J.J., Schifano, S.F., Sciretti, D., Tarancon, A., Tripiccione, R., Velasco, J.L., Yllanes, D., Zanier, G.: Janus: an FPGA-based system for high-performance scientific computing. Comput. Sci. Eng. 11(1), 48–58 (2009)

    Article  Google Scholar 

  15. Karandashev, Y.M., Kryzhanovsky, B.V.: Transformation of energy landscape in the problem of binary minimization. Doklady Math. 80(3), 927–931 (2009)

    Article  MATH  Google Scholar 

  16. Gu, J., Huang, X.: Efficient local search space smoothing: a case study of the traveling salesman problem (tsp). IEEE Trans. Syst. Man Cybern. 24, 728–735 (1994)

    Article  Google Scholar 

  17. Schneider, J.J., Dankesreiter, M., Fettes, W., Morgenstern, I., Schmid, M., Singer, J.M.: Search-space smoothing for combinatorial optimization problems. Phys. A 243, 77–112 (1997)

    Article  Google Scholar 

  18. Zhang, Y., Kihara, D., Skolnick, J.: Local energy landscape flattening: parallel hyperbolic monte carlo sampling of protein folding. Proteins 48, 192–201 (2002)

    Article  Google Scholar 

  19. Pritchard-Bell, A., Shell, M.S.: Smoothing protein energy landscapes by integrating folding models with structure prediction. Biophys. J. 101(9), 2251–2259 (2011)

    Article  Google Scholar 

  20. Cetin, B.C., Barhen, J., Burdick, J.W.: Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization. J. Optim. Theory Appl. 77(1), 97–126 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hamacher, K.: Adaptation in stochastic tunneling global optimization of complex potential energy landscapes. Europhys. Lett. 74(6), 944–950 (2006)

    Article  Google Scholar 

  22. Hamacher, K.: A new hybrid metaheuristic—combining stochastic tunneling and energy landscape paving. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels M. (eds.) Hybrid Metaheuristics, Lecture Notes in Computer Science, 7919:107–117 (2013)

  23. Karandashev, I.M., Kryzhanovsky, B.V.: Increasing the attraction area of the global minimum in the binary optimization problem. J. Glob. Optim. 56(3), 1167–1185 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F Met. Phys. 5(5), 965–974 (1975)

    Article  Google Scholar 

  25. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. PNAS 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  26. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  27. Geyer, C.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, pp. 156–163. Interface Foundation of North America. http://purl.umn.edu/58440L (1991)

  28. Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 19(6), 451 (1992)

    Article  Google Scholar 

  29. Guennebaud, G., Jacob, B., et al.: Eigen. http://eigen.tuxfamily.org (2012)

  30. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Baños, A.R., Cruz, A., Fernandez, L.A., Gil-Narvion, J.M., Gordillo-Guerrero, A., Guidetti, M., Maiorano, A., Mantovani, F., Marinari, E., Martin-Mayor, V., Monforte-Garcia, J., Muñoz Sudupe, A., Navarro, D., Parisi, G., Perez-Gaviro, S., Ruiz-Lorenzo, J.J., Schifano, S.F., Seoane, B., Tarancon, A., Tripiccione, R., Yllanes, D.: Nature of the spin-glass phase at experimental length scales. J. Stat. Mech. 2010(06), P06026 (2010)

    Google Scholar 

  32. Katzgraber, H.G., Palassini, M., Young, A.P.: Monte carlo simulations of spin glasses at low temperatures. Phys. Rev. B 63(18), 184422 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The simulations were performed at the C. v. O. Universität Oldenburg on the HERO cluster funded by the DFG (INST 184/108-1 FUGG) and the ministry of Science and Culture (MWK) of the Lower Saxony State. We would like to thank Simon Knowles for criticially reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Manssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manssen, M., Hartmann, A.K. Matrix-power energy-landscape transformation for finding NP-hard spin-glass ground states. J Glob Optim 61, 183–192 (2015). https://doi.org/10.1007/s10898-014-0153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0153-7

Keywords

Navigation