Journal of Global Optimization

, Volume 60, Issue 4, pp 737–750 | Cite as

Optimal control of impulsive switched systems with minimum subsystem durations

  • Eunice Blanchard
  • Ryan Loxton
  • Volker Rehbock


This paper presents a new computational approach for solving optimal control problems governed by impulsive switched systems. Such systems consist of multiple subsystems operating in succession, with possible instantaneous state jumps occurring when the system switches from one subsystem to another. The control variables are the subsystem durations and a set of system parameters influencing the state jumps. In contrast with most other papers on the control of impulsive switched systems, we do not require every potential subsystem to be active during the time horizon (it may be optimal to delete certain subsystems, especially when the optimal number of switches is unknown). However, any active subsystem must be active for a minimum non-negligible duration of time. This restriction leads to a disjoint feasible region for the subsystem durations. The problem of choosing the subsystem durations and the system parameters to minimize a given cost function is a non-standard optimal control problem that cannot be solved using conventional techniques. By combining a time-scaling transformation and an exact penalty method, we develop a computational algorithm for solving this problem. We then demonstrate the effectiveness of this algorithm by considering a numerical example on the optimization of shrimp harvesting operations.


Optimal control Impulsive system Switched system  Time-scaling transformation Exact penalty function 


  1. 1.
    Ho, C.Y.F., Ling, B.W.K., Liu, Y.Q., Tam, P.K.S., Teo, K.L.: Optimal PWM control of switched-capacitor DC-DC power converters via model transformation and enhancing control techniques. IEEE Trans. Circ. Syst. I Regul. Papers 55(5), 1382–1391 (2008)CrossRefGoogle Scholar
  2. 2.
    Jennings, L.S., Fisher, M.E., Teo, K.L., Goh, C.J.: MISER 3.3 Optimal Control Software Theory and User Manual. University of Western Australia, Perth (2004)Google Scholar
  3. 3.
    Jiang, C., Lin, Q., Yu, C., Teo, K.L., Duan, G.R.: An exact penalty method for free terminal time optimal control problem with continuous inequality constraints. J. Optim. Theory Appl. 154(1), 30–53 (2012)CrossRefGoogle Scholar
  4. 4.
    Jiang, C., Teo, K.L., Loxton, R., Duan, G.R.: A neighboring extremal solution for an optimal switched impulsive control problem. J. Ind. Manag. Optim. 8(3), 591–609 (2012)CrossRefGoogle Scholar
  5. 5.
    Khadra, A., Liu, X., Shen, X.: Application of impulsive synchronization to communication security. IEEE Trans. Circ. Syst. I. Fundam. Theory Appl. 50(3), 341–351 (2003)CrossRefGoogle Scholar
  6. 6.
    Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a Survey. J. Ind. Manag. Optim.Google Scholar
  7. 7.
    Lin, Q., Loxton, R., Teo, K.L., Wu, Y.H.: A new computational method for a class of free terminal time optimal control problems. Pac. J. Optim. 7(1), 63–81 (2011)Google Scholar
  8. 8.
    Lin, Q., Loxton, R., Teo, K.L., Wu, Y.H.: A new computational method for optimizing nonlinear impulsive systems. Dynamics of Continuous. Dis. Impulsive Syst. Ser. B Appl. Algorithms 18(1), 59–76 (2011)Google Scholar
  9. 9.
    Lin, Q., Loxton, R., Teo, K.L., Wu, Y.H., Yu, C.: A new exact penalty method for semi-infinite programming problems. J. Comput. Appl. Math., submittedGoogle Scholar
  10. 10.
    Liu, Y., Teo, K.L., Jennings, L.S., Wang, S.: On a class of optimal control problems with state jumps. J. Optim. Theory Appl. 98(1), 65–82 (1998)CrossRefGoogle Scholar
  11. 11.
    Loxton, R., Teo, K.L., Rehbock, V.: Computational method for a class of switched system optimal control problems. IEEE Trans. Autom. Contl. 54(10), 2455–2460 (2009)CrossRefGoogle Scholar
  12. 12.
    Loxton, R.C., Teo, K.L., Rehbock, V., Ling, W.K.: Optimal switching instants for a switched-capacitor DC/DC power converter. Automatica 45(4), 973–980 (2009)CrossRefGoogle Scholar
  13. 13.
    Luenberger, D.G., Ye, Y.: Linear Nonlinear Program., 3rd edn. Springer, New York (2008)Google Scholar
  14. 14.
    Nocedal, J., Wright, S.J.: Num. Optim., 2nd edn. Springer, New York (2006)Google Scholar
  15. 15.
    Peng, Y., Xiang, X.: Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls. J. Ind. Manag. Optim. 4(1), 17–32 (2008)CrossRefGoogle Scholar
  16. 16.
    Ruby, T., Rehbock, V., Lawrance, W.B.: Optimal control of hybrid power systems. Dynamics of Continuous. Disc. Impulsive Syst. Ser. B Appl. Algorithms 10(3), 429–439 (2003)Google Scholar
  17. 17.
    Wei, W., Teo, K.L., Zhan, Z.: A numerical method for an optimal control problem with minimum sensitivity on coefficient variation. Appl. Math. Comput. 218(4), 1180–1190 (2011)CrossRefGoogle Scholar
  18. 18.
    Wu, C.Z., Teo, K.L.: Global impulsive optimal control computation. J. Ind. Manag. Optim. 2(4), 435–450 (2006)CrossRefGoogle Scholar
  19. 19.
    Xu, H., Teo, K.L.: \(H_{\infty }\) optimal stabilization of a class of uncertain impulsive systems: an LMI approach. J. Ind. Manag. Optim. 5(1), 153–159 (2009)CrossRefGoogle Scholar
  20. 20.
    Yu, R., Leung, P.: Optimal partial harvesting schedule for aquaculture operations. Mar. Res. Econ. 21(3), 301–315 (2006)Google Scholar
  21. 21.
    Yu, C., Teo, K.L., Bai, Y.: An exact penalty function method for nonlinear mixed discrete programming problems. Optim. Lett. 7(1), 23–38 (2013)CrossRefGoogle Scholar
  22. 22.
    Yu, C., Teo, K.L., Zhang, L., Bai, Y.: A new exact penalty function method for continuous inequality constrained optimization problems. J. Ind. Manag. Optim. 6(4), 895–910 (2010)CrossRefGoogle Scholar
  23. 23.
    Yu, C., Teo, K.L., Zhang, L., Bai, Y.: On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. J. Ind. Manag. Optim. 8(2), 485–491 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Eunice Blanchard
    • 1
  • Ryan Loxton
    • 1
    • 2
  • Volker Rehbock
    • 1
  1. 1.Department of Mathematics and StatisticsCurtin UniversityPerthAustralia
  2. 2.Institute of Cyber-Systems and ControlZhejiang UniversityHangzhouChina

Personalised recommendations