Journal of Global Optimization

, Volume 58, Issue 4, pp 769–794 | Cite as

Memetic algorithms and hyperheuristics applied to a multiobjectivised two-dimensional packing problem



Packing problems are np-hard problems with several practical applications. A variant of a 2d Packing Problem (2dpp) was proposed in the gecco 2008 competition session. In this paper, Memetic Algorithms (mas) and Hyperheuristics are applied to a multiobjectivised version of the 2dpp. Multiobjectivisation is the reformulation of a mono-objective problem into a multi-objective one. The main aim of multiobjectivising the 2dpp is to avoid stagnation in local optima. First generation mas refers to hybrid algorithms that combine a population-based global search with an individual learning process. A novel first generation ma is proposed, and an original multiobjectivisation method is applied to the 2dpp. In addition, with the aim of facilitating the application of such first generation mas from the point of view of the parameter setting, and of enabling their usage in parallel environments, a parallel hyperheuristic is also applied. Particularly, the method applied here is a hybrid approach which combines a parallel island-based model and a hyperheuristic. The main objective of this work is twofold. Firstly, to analyse the advantages and drawbacks of a set of first generation mas. Secondly, to attempt to avoid those drawbacks by applying a parallel hyperheuristic. Moreover, robustness and scalability analyses of the parallel scheme are included. Finally, we should note that our methods improve on the current best-known solutions for the tested instances of the 2dpp.


Memetic algorithms Hyperheuristics Multiobjectivisation  Packing problems Parameter setting 



This work was funded in part by the ec (feder) and the Spanish Ministry of Science and Innovation as part of the ‘Plan Nacional de i+d+i’, with contract number tin2011-25448. The work of Carlos Segura was funded by grant fpu-ap2008-03213. The work of Eduardo Segredo was funded by grant fpu-ap2009-0457 The work was also funded by the hpc-europa2 project (project number: 228398) with the support of the European Commission—Capacities Area—Research Infrastructures. Our research made use of the facilities of hector, the uk’s national high-performance computing service, which is provided by uoe hpcx Ltd at the University of Edinburgh, Cray Inc and nag Ltd, and funded by the Office of Science and Technology through the epsrc’s High End Computing Programme.


  1. 1.
    Abbass, H.A., Deb, K.: Searching under multi-evolutionary pressures. In: Proceedings of the Fourth Conference on Evolutionary Multi-Criterion Optimization, pp. 391–404. Springer (2003)Google Scholar
  2. 2.
    Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, Hoboken, NJ (2005)CrossRefGoogle Scholar
  3. 3.
    Araya, I., Neveu, B., Riff, M.C.: An efficient hyperheuristic for strip-packing problems. In: Cotta, C., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics, Studies in Computational Intelligence, vol. 136, pp. 61–76. Springer (2008)Google Scholar
  4. 4.
    Blazewicz, J., Walkowiak, R.: A new parallel approach for multi-dimensional packing problem. In: 4th International Conference on Parallel Processing and Applied Mathematics (PPAM), LNCS, vol. 2328, pp. 194–201. Naleczow, Poland, Springer, Berlin (2002)Google Scholar
  5. 5.
    Bui, L., Abbass, H., Branke, J.: Multiobjective optimization for dynamic environments. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, CEC 2005, vol. 3, pp. 2349–2356 (2005)Google Scholar
  6. 6.
    Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Handbook of Meta-heuristics. Hyper-heuristics: An Emerging Direction in Modern Search Technology. Kluwer, Berlin (2003)Google Scholar
  7. 7.
    Burke, E.K., Kendall, G., Silva, J.L., O’Brien, R., Soubeiga, E.: An ant algorithm hyperheuristic for the project presentation scheduling problem. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, CEC 2005, vol. 3, pp. 2263–2270. Edinburgh, Scotland (2005)Google Scholar
  8. 8.
    Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. J. Heuristics 9(6), 451–470 (2003)CrossRefGoogle Scholar
  9. 9.
    Chen, P.C., Kendall, G., Vanden Berghe, G.: An ant based hyper-heuristic for the travelling tournament problem. In: Proceedings of IEEE Symposium of Computational Intelligence in Scheduling (CISched 2007), pp. 19–26. Honolulu, Hawaii (2007)Google Scholar
  10. 10.
    Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and, Evolutionary Computation (2007)Google Scholar
  11. 11.
    Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1185–1190. IEEE Computer Society, Washington, DC, USA (2002)Google Scholar
  12. 12.
    Cowling, P., Kendall, G., Soubeiga, E.: A parameter-free hyperheuristic for scheduling a sales summit. In: Proceedings of 4th Metahuristics International Conference (MIC 2001), pp. 127–131. Porto Portugal (2001)Google Scholar
  13. 13.
    Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: A robust optimisation method applied to nurse scheduling. In: PPSN, Lecture Notes in Computer Science, vol. 2439, pp. 851–860. Springer (2002)Google Scholar
  14. 14.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  15. 15.
    Dems̆ar, J.: Statistical comparison of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)Google Scholar
  16. 16.
    Dowsland, K., Soubeiga, E., Burke, E.: A simulated annealing hyper-heuristic for determining shipper sizes. Eur. J. Oper. Res. 179(3), 759–774 (2007)CrossRefGoogle Scholar
  17. 17.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing (Natural Computing Series). Springer, Berlin (2008)Google Scholar
  18. 18.
    Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics (International Series in Operations Research & Management Science). Springer, Berlin (2003)Google Scholar
  19. 19.
    HECToR: UK National Supercomputing Service.
  20. 20.
    Hong, T.P., Tsai, M.W., Liu, T.K.: Two-dimentional encoding schema and genetic operators. In: JCIS. Atlantis Press (2006)Google Scholar
  21. 21.
    Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann Publishers, Burlington (2005)Google Scholar
  22. 22.
    Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002)CrossRefGoogle Scholar
  23. 23.
    Kendall, G., Cowling, P., Soubeiga, E.: Choice function and random hyperheuristics. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), pp. 667–671. Singapore (2002)Google Scholar
  24. 24.
    Knowles, J.D., Watson, R.A., Corne, D.: Reducing local optima in single-objective problems by multi-objectivization. In: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, EMO ’01, pp. 269–283. Springer, London (2001)Google Scholar
  25. 25.
    Lara, O., Labrador, M.: A multiobjective ant colony-based optimization algorithm for the bin packing problem with load balancing. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation, CEC 2010, pp. 1–8 (2010)Google Scholar
  26. 26.
    León, C., Miranda, G., Rodríguez, C., Segura, C.: 2D Cutting stock problem: a New Parallel algorithm and bounds. In: Proceedings of Euro-Par, LNCS, vol. 4641, pp. 795–804. Springer (2007)Google Scholar
  27. 27.
    León, C., Miranda, G., Segura, C.: A memetic algorithm and a parallel hyperheuristic island-based model for a 2d packing problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09, pp. 1371–1378. ACM, New York, NY, USA (2009)Google Scholar
  28. 28.
    León, C., Miranda, G., Segura, C.: METCO: a parallel plugin-based framework for multi-objective optimization. Int. J. Artif. Intell. Tools 18(4), 569–588 (2009)CrossRefGoogle Scholar
  29. 29.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: a survey. Eur. J. Oper. Res. 141(2), 241–252 (2002)CrossRefGoogle Scholar
  30. 30.
    Martello, S., Monaci, M., Vigo, D.: An exact approach to the strip-packing problem. INFORMS J. Comput. 15(3), 310–319 (2003)CrossRefGoogle Scholar
  31. 31.
    Matayoshi, M.: Two dimensional rectilinear polygon packing using genetic algorithm with a hierarchical chromosome. In: Proceedings of the IEEE International Conference on Systems, Man and, Cybernetics, pp. 989–996 (2011)Google Scholar
  32. 32.
    Nguyen, Q.H., Ong, Y.S., Lim, M.H.: Non-genetic transmission of memes by diffusion. In: Proceedings of the 10th annual conference on Genetic and evolutionary computation, GECCO ’08, pp. 1017–1024. ACM, New York, NY, USA (2008)Google Scholar
  33. 33.
    Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: a comparative study. IEEE Trans. Syst. Man Cybern. 36(1), 141–152 (2006)CrossRefGoogle Scholar
  34. 34.
    Segredo, E., Segura, C., León, C.: A multiobjectivised memetic algorithm for the frequency assignment problem. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation, CEC 2011, pp. 1132–1139 (2011)Google Scholar
  35. 35.
    Segura, C., Segredo, E., León, C.: Parallel island-based multiobjectivised memetic algorithms for a 2D packing problem. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pp. 1611–1618. ACM, New York, NY, USA (2011)Google Scholar
  36. 36.
    Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete Reference. The MIT Press, Cambridge (1996)Google Scholar
  37. 37.
    Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolutionary algorithms. Evol. Comput. 11, 151–167 (2003)CrossRefGoogle Scholar
  38. 38.
    Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 144–173 (2003)CrossRefGoogle Scholar
  39. 39.
    Vink, T., Izzo, D.: Learning the best combination of solvers in a distributed global optimization environment. In: Proceedings of Advances in Global Optimization: Methods and Applications (AGO), pp. 13–17. Mykonos, Greece (2007)Google Scholar
  40. 40.
    Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–1130 (2007)CrossRefGoogle Scholar
  41. 41.
    Zhou, Y., Rao, Y., Zhang, G., Zhang, C.: An adaptive memetic algorithm for packing problems of irregular shapes. Adv. Mater. Res. 314–316, 1029–1033 (2011)Google Scholar
  42. 42.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K.C. et al., (eds.) Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE) (2002)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Eduardo Segredo
    • 1
  • Carlos Segura
    • 1
  • Coromoto León
    • 1
  1. 1.Dpto. Estadística, I. O. y ComputaciónUniversidad de La LagunaLa LagunaSpain

Personalised recommendations