Journal of Global Optimization

, Volume 59, Issue 1, pp 131–138 | Cite as

On penalty methods for non monotone equilibrium problems

  • I. V. Konnov


We consider a general equilibrium problem under weak coercivity conditions in a finite-dimensional space setting. It appears such a condition provides convergence of the general penalty method without any monotonicity assumptions. We also show that the regularized version of the penalty method enables us to further weaken the coercivity condition.


Equilibrium problems Nonmonotone bifunctions Penalty method Coercivity conditions Regularized penalty method 

Mathematics Subject Classification (2000)

90C33 47J20 65K15 65J20 


  1. 1.
    Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)Google Scholar
  2. 2.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)Google Scholar
  3. 3.
    Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)CrossRefGoogle Scholar
  4. 4.
    Konnov, I.V.: Generalized monotone equilibrium problems and variational inequalities. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, “Nonconvex Optimization and Applications”, vol. 76, pp. 559–618. Springer, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Gwinner, J.: On the penalty method for constrained variational inequalities. In: Hiriart-Urruty, J.-B., Oettli, W., Stoer, J. (eds.) Optimization: Theory and Algorithms, pp. 197–211. Marcel Dekker, New York (1981)Google Scholar
  6. 6.
    Muu, L.D., Oettli, W.: A Lagrangian penalty function method for monotone variational inequalities. Numer. Funct. Anal. Optim. 10, 1003–1017 (1989)CrossRefGoogle Scholar
  7. 7.
    Antipin, A.S., Vasil’ev, F.P.: A stabilization method for equilibrium programming problems with an approximately given set. Comput. Math. Math. Phys. 39, 1707–1714 (1999)Google Scholar
  8. 8.
    Konnov, I.V.: Regularization method for nonmonotone equilibrium problems. J. Nonlin. Convex Anal. 10, 93–101 (2009)Google Scholar
  9. 9.
    Konnov, I.V., Dyabilkin, D.A.: Nonmonotone equilibrium problems: coercivity conditions and weak regularization. J. Glob. Optim. 49, 575–587 (2011)CrossRefGoogle Scholar
  10. 10.
    Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)Google Scholar
  11. 11.
    Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79–92 (2005)CrossRefGoogle Scholar
  12. 12.
    Sukharev, A.G., Timokhov, A.V., Fedorov, V.V.: A Course in Optimization Methods. Nauka, Moscow (1986). (in Russian)Google Scholar
  13. 13.
    Bianchi, M., Hadjisavvas, N., Schaible, S.: Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities. J. Optim. Theory Appl. 122, 1–17 (2004)Google Scholar
  14. 14.
    Nikaido, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 5, 807–815 (1955)CrossRefGoogle Scholar
  15. 15.
    Rosen, J.B.: Existence and uniqueness of equilibrium points for concave \(n\)-person games. Econometrica 33, 520–534 (1965)CrossRefGoogle Scholar
  16. 16.
    Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20, 2228–2253 (2010)CrossRefGoogle Scholar
  17. 17.
    Konnov, I.V.: Spatial equilibrium problems for auction type systems. Russ. Math. (Iz. VUZ) 52(1), 30–44 (2008)Google Scholar
  18. 18.
    Konnov, I.V.: Decomposition approaches for constrained spatial auction market problems. Netw. Sp. Econ. 9, 505–524 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of System Analysis and Information TechnologiesKazan Federal UniversityKazanRussia

Personalised recommendations