Journal of Global Optimization

, Volume 57, Issue 2, pp 467–497 | Cite as

Analysing the scalability of multiobjective evolutionary algorithms when solving the motif discovery problem

  • David L. González-Álvarez
  • Miguel A. Vega-Rodríguez


In this paper we analyse the scalability of seven multiobjective evolutionary algorithms when they solve large instances of a known biological problem, the motif discovery problem (MDP). The selected algorithms are a population-based and a trajectory-based algorithms (DEPT and MO-VNS, respectively), three swarm intelligence algorithms (MOABC, MO-FA, and MO-GSA), a genetic algorithm (NSGA-II), and SPEA2. The MDP is one of the most important sequence analysis problems related to discover common patterns, motifs, in DNA sequences. A motif is a nucleic acid sequence pattern that has some biological significance as being DNA binding sites for a regulatory protein, i.e., a transcription factor (TF). A biologically relevant motif must have a certain length, be found in many sequences, and present a high similarity among the subsequences which compose it. These three goals are in conflict with each other, therefore a multiobjective approach is a good way of facing the MDP. In addition, in recent years, scientists are decoding genomes of many organisms, increasing the computational workload of the algorithms. Therefore, we need algorithms that are able to deal with these new large DNA instances. The obtained experimental results suggest that MOABC and MO-FA are the algorithms with the best scalability behaviours.


Computer science Scalability analysis Multiobjective programming Evolutionary algorithm DNA 



This work was partially funded by the Spanish Ministry of Economy and Competitiveness and the ERDF (European Regional Development Fund), under the contract TIN2012-30685 (BIO project). Thanks also to the Fundación Valhondo for the economic support offered to David L. González-Álvarez.


  1. 1.
    Ao, W., Gaudet, J., Kent, W.J., Muttumu, S., Mango, S.E.: Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science 305(5691), 1743–1746 (2004)CrossRefGoogle Scholar
  2. 2.
    Bailey, T.L., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach. Learn. 21(1–2), 51–80 (1995)Google Scholar
  3. 3.
    Che, D., Song, Y., Rashedd, K.: MDGA: motif discovery using a genetic algorithm. In: Proceedings of the 2005 Conference on Genetic and, Evolutionary Computation (GECCO’05), pp. 447–452 (2005)Google Scholar
  4. 4.
    Congdon, C.B., Fizer, C.W., Smith, N.W., Gaskins, H.R., Aman, J., Nava, G.M., Mattingly, C.: Preliminary results for GAMI: a genetic algorithms approach to motif inference. In: Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB’05), pp. 97–104 (2005)Google Scholar
  5. 5.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)Google Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    D’haeseleer, P.: What are DNA sequence motifs? Nat. Biotechnol. 24(4), 423–425 (2006)CrossRefGoogle Scholar
  8. 8.
    Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in DNA sequences. Bioinformatics 18(Suppl 1), S354–S363 (2002)CrossRefGoogle Scholar
  9. 9.
    Favorov, A.V., Gelfand, M.S., Gerasimova, A.V., Ravcheev, D.A., Mironov, A.A., Makeev, V.J.: A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics 21(10), 2240–2245 (2005)CrossRefGoogle Scholar
  10. 10.
    Fogel, G.B., Porto, V.W., Varga, G., Dow, E.R., Craven, A.M., Powers, D.M., Harlow, H.B., Su, E.W., Onyia, J.E., Su, C.: Evolutionary computation for discovery of composite transcription factor binding sites. Nucleic Acids Res. 36(21), e142 (2008)CrossRefGoogle Scholar
  11. 11.
    Fogel, G.B., Weekes, D.G., Varga, G., Dow, E.R., Harlow, H.B., Onyia, J.E., Su, C.: Discovery of sequence motifs related to coexpression of genes using evolutionary computation. Nucleic Acids Res. 32(13), 3826–3835 (2004)CrossRefGoogle Scholar
  12. 12.
    Frith, M.C., Hansen, U., Spouge, J.L., Weng, Z.: Finding functional sequence elements by multiple local alignment. Nucleic Acids Res. 32(1), 189–200 (2004)CrossRefGoogle Scholar
  13. 13.
    González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: A multiobjective variable neighborhood search for solving the motif discovery problem. Int. Workshop Soft Comput. Models Ind. Appl. (SOCO’10) 73, 39–46 (2010)Google Scholar
  14. 14.
    González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Solving the motif discovery problem by using differential evolution with pareto tournaments. In: Proceedings of the 2010 IEEE Congress on, Evolutionary Computation (CEC’10), pp. 4140–4147 (2010)Google Scholar
  15. 15.
    González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. International Work Conference on Artificial Neural Networks (IWANN’11), LNCS 6692/2011, 372–379 (2011)Google Scholar
  16. 16.
    González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Finding motifs in DNA sequences applying a multiobjective artificial bee colony (MOABC) algorithm. In: Proceedings of 8th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EVOBIO’11), LNCS 6623/2011, pp. 89–100 (2011)Google Scholar
  17. 17.
    González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Predicting DNA motifs by using evolutionary multiobjective optimization. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 913–925 (2011)CrossRefGoogle Scholar
  18. 18.
    González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery. Eng. Appl. Artif. Intell. 26(1), 314–326 (2012)CrossRefGoogle Scholar
  19. 19.
    Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8), 563–577 (1999)CrossRefGoogle Scholar
  20. 20.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Turkey (2005)Google Scholar
  21. 21.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. J. 8(1), 687–697 (2008)CrossRefGoogle Scholar
  22. 22.
    Kaya, M.: MOGAMOD: multi-objective genetic algorithm for motif discovery. Expert Syst. Appl. 36(2), 1039–1047 (2009)CrossRefGoogle Scholar
  23. 23.
    Liu, F.F.M., Tsai, J.J.P., Chen, R.M., Chen, S.N., Shih, S.H.: FMGA: finding motifs by genetic algorithm. Fourth IEEE Symposium on Bioinformatics and, Bioengineering (BIBE’04), pp. 459–466 (2004)Google Scholar
  24. 24.
    Lones, M.A., Tyrrell, A.M.: Regulatory motif discovery using a population clustering evolutionary algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(3), 403–414 (2007)CrossRefGoogle Scholar
  25. 25.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Operat. Res. 24, 1097–1100 (1997)CrossRefGoogle Scholar
  26. 26.
    Paul, T.K., Iba, H.: Identification of weak motifs in multiple biological sequences using genetic algorithm. In: Proceedings of the 2006 Conference on Genetic and, Evolutionary Computation (GECCO’06), pp. 271–278 (2006)Google Scholar
  27. 27.
    Pavesi, G., Mauri, G., Pesole, G.: An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17(Suppl 1), S207–S214 (2001)CrossRefGoogle Scholar
  28. 28.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefGoogle Scholar
  29. 29.
    Regnier, M., Denise, A.: Rare events and conditional events on random strings. Discrete Math. Theor. Comput. Sci. 6, 191–214 (2004)Google Scholar
  30. 30.
    Roth, F.P., Hughes, J.D., Estep, P.W., Church, G.M.: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16(10), 939–945 (1998)CrossRefGoogle Scholar
  31. 31.
    Shao, L., Chen, Y.: Bacterial foraging optimization algorithm integrating tabu search for motif discovery. IEEE International Conference on Bioinformatics and, Biomedicine (BIBM’09), pp. 415–418 (2009)Google Scholar
  32. 32.
    Shao, L., Chen, Y., Abraham, A.: Motif discovery using evolutionary algorithms. International Conference of Soft Computing and, Pattern Recognition (SOCPAR’09), pp. 420–425 (2009)Google Scholar
  33. 33.
    Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. Chapman & Hall/CRC Press, New York (2007)Google Scholar
  34. 34.
    Sinha, S., Tompa, M.: YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 31(13), 3586–3588 (2003)CrossRefGoogle Scholar
  35. 35.
    Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol. Comput. 2(3), 221–248 (1995)CrossRefGoogle Scholar
  36. 36.
    Stine, M., Dasgupta, D., Mukatira, S.: Motif discovery in upstream sequences of coordinately expressed genes. 2003 Congr. Evol. Comput. (CEC’03) 3, 1596–1603 (2003)CrossRefGoogle Scholar
  37. 37.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefGoogle Scholar
  38. 38.
    Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouzé, P., Moreau, Y.: A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17(12), 1113–1122 (2001)CrossRefGoogle Scholar
  39. 39.
    Tompa, M., Li, N., Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov, A.V., Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S., Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., Zhu, Z.: Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23(1), 137–144 (2005)CrossRefGoogle Scholar
  40. 40.
    van Helden, J., Andre, B., Collado-Vides, J.: Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281(5), 827–842 (1998)CrossRefGoogle Scholar
  41. 41.
    van Helden, J., Rios, A.F., Collado-Vides, J.: Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids Res. 28(8), 1808–1818 (2000)CrossRefGoogle Scholar
  42. 42.
    Weicker, N., Szabo, G., Weicker, K., Widmayer, P.: Evolutionay multiobjective optimization for base station transmitter placement with frequency assignment. IEEE Trans. Evol. Comput. 7(2), 189–203 (2003)CrossRefGoogle Scholar
  43. 43.
    Workman, C.T., Stormo, G.D.: ANN-Spec: a method for discovering transcription factor binding sites with improved specificity. Pacific Symposium on Biocomputing, pp. 467–478 (2000)Google Scholar
  44. 44.
    Yang, X.S.: Firefly algorithms for multimodal optimization. 5th International Symposium of Stochastic Algorithms: Foundations and Applications (SAGA’09), LNCS 5792, pp. 169–178 (2009)Google Scholar
  45. 45.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  46. 46.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Technical report tik-report 103, Swiss Federal Institute of Technology Zurich, Switzeland (2001)Google Scholar
  47. 47.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David L. González-Álvarez
    • 1
  • Miguel A. Vega-Rodríguez
    • 1
  1. 1.Department Technologies of Computers and Communications, ARCO Research GroupUniversity of ExtremaduraCáceresSpain

Personalised recommendations