Aarts E.H.L., van Laarhoven P.J.M.: Statistical cooling: a general approach to combinatorial optimization problems. Phillips J. Res. 40, 193–226 (1985)
Google Scholar
Abramson, M.A.: Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems. PhD thesis, Department of Computational and Applied Mathematics, Rice University, Houston (2002, Aug)
Abramson, M.A.: NOMADm Version 4.5 User’s Guide. Air Force Institute of Technology, Wright-Patterson AFB, OH (2007)
Abramson M.A., Asaki T.J., Dennis J.E. Jr., O’Reilly K.R., Pingel R.L.: Quantitative object reconstruction via Abel-based X-ray tomography and mixed variable optimization. SIAM J. Imaging Sci. 1, 322–342 (2008)
Article
Google Scholar
Abramson M.A., Audet C.: Convergence of mesh adaptive direct search to second-order stationary points. SIAM J. Optim. 17, 606–609 (2006)
Article
Google Scholar
Abramson, M.A., Audet, C., Couture, G., Dennis, J.E. Jr., LeDigabel, S.: The Nomad project. http://www.gerad.ca/nomad/
Abramson M.A., Audet C., Dennis J.E. Jr: Filter pattern search algorithms for mixed variable constrained optimization problems. Pac. J. Optim. 3, 477–500 (2007)
Google Scholar
Abramson M.A., Audet C., Dennis J.E. Jr, Le Digabel S.: OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM J. Optim. 20, 948–966 (2009)
Article
Google Scholar
Audet C.: Convergence results for generalized pattern search algorithms are tight. Optim. Eng. 5, 101–122 (2004)
Article
Google Scholar
Audet C., Béchard V., Chaouki J.: Spent potliner treatment process optimization using a MADS algorithm. Optim. Eng. 9, 143–160 (2008)
Article
Google Scholar
Audet C., Dennis J.E. Jr: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17, 188–217 (2006)
Article
Google Scholar
Audet C., Dennis J.E. Jr: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20, 445–472 (2009)
Article
Google Scholar
Awasthi, S.: Molecular Docking by Derivative-Free Optimization Solver. Master’s thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh (2008)
Barros P.A. Jr, Kirby M.R., Mavris D.N.: Impact of sampling techniques selection on the creation of response surface models. SAE Trans. J. Aerosp. 113, 1682–1693 (2004)
Google Scholar
Bartholomew-Biggs M.C., Parkhurst S.C., Wilson S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21, 311–323 (2002)
Article
Google Scholar
Barton, R.R.: Metamodeling: A state of the art review. In: Proceedings of the 1994 Winter Simulation Conference, pp. 237–244 (1994)
Bélisle C.J., Romeijn H.E., Smith R.L.: Hit-and-run algorithms for generating multivariate distributions. Math. Oper. Res. 18, 255–266 (1993)
Article
Google Scholar
Bethke, J.D.: Genetic Algorithms as Function Optimizers. PhD thesis, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor (1980)
Björkman M., Holmström K.: Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng. 1, 373–397 (2000)
Article
Google Scholar
Boender C.G.E., Rinnooy Kan A.H.G., Timmer G.T.: A stochastic method for global optimization. Math. Program. 22, 125–140 (1982)
Article
Google Scholar
Boneh, A., Golan, A.: Constraints’ redundancy and feasible region boundedness by random feasible point generator (RFPG). In: 3rd European Congress on Operations Research (EURO III), Amsterdam (1979)
Booker, A.J., Dennis, J.E., Jr., Frank, P.D., Serafini, D.B., Torczon, V.J., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. In: ICASE Report, pp. 1–24 (1998)
Booker A.J., Dennis J.E. Jr, Frank P.D., Serafini D.B., Torczon V.J., Trosset M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17, 1–13 (1999)
Article
Google Scholar
Booker A.J., Meckesheimer M., Torng T.: Reliability based design optimization using design explorer. Optim. Eng. 5, 179–205 (2004)
Article
Google Scholar
Brent R.P.: Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs (1973)
Google Scholar
Chang, K.-F.: Modeling and Optimization of Polymerase Chain Reaction Using Derivative-Free Optimization. Master’s thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh (2011)
Chiang T., Chow Y.: A limit theorem for a class of inhomogeneous Markov processes. Ann. Probab. 17, 1483–1502 (1989)
Article
Google Scholar
COIN-OR Project. Derivative Free Optimization. http://projects.coin-or.org/Dfo
COIN-OR Project. IPOPT 2.3.x A software package for large-scale nonlinear optimization. http://www.coin-or.org/Ipopt/ipopt-fortran.html
Conn A.R., Gould N., Lescrenier M., Toint Ph.L.: Performance of a multifrontal scheme for partially separable optimization. In: Gomez, S., Hennart, J.-P. (eds) Advances in Optimization and Numerical Analysis, pp. 79–96. Kluwer, Dordrecht (1994)
Chapter
Google Scholar
Conn A.R., Scheinberg K., Toint P.L.: On the convergence of derivative-free methods for unconstrained optimization. In: Buhmann, M.D., Iserles, A. (eds) Approximation Theory and Optimization, Tribute to M. J. D. Powell, pp. 83–108. Cambridge University Press, Cambridge (1996)
Google Scholar
Conn A.R., Scheinberg K., Toint P.L.: Recent progress in unconstrained nonlinear optimization without derivatives. Math. Program. 79, 397–414 (1997)
Google Scholar
Conn, A.R., Scheinberg, K., Toint, P.L.: A derivative free optimization algorithm in practice. In: Proceedings of AIAA St Louis Conference, pp. 1–11 (1998)
Conn A.R., Scheinberg K., Vicente L.N.: Global convergence of general derivative-free trust-region algorithms to first and second order critical points. SIAM J. Optim. 20, 387–415 (2009)
Article
Google Scholar
Conn A.R., Scheinberg K., Vicente L.N.: Introduction to derivative-free optimization. SIAM, Philadelphia (2009)
Book
Google Scholar
Cox, D.D., John, S.: SDO: A statistical method for global optimization. In: Multidisciplinary Design Optimization (Hampton, VA, 1995), pp. 315–329. SIAM, Philadelphia (1997)
Csendes T., Pál L., Sendín J.O.H., Banga J.R.: The GLOBAL optimization method revisited. Optim. Lett. 2, 445–454 (2008)
Article
Google Scholar
Custódio A.L., Dennis J.E. Jr, Vicente L.N.: Using simplex gradients of nonsmooth functions in direct search methods. IMA J. Numer. Anal. 28, 770–784 (2008)
Article
Google Scholar
Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models in direct search. Comput. Optim. Appl. (to appear)
Custódio, A.L., Vicente, L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM J. Optim. 18, 537–555 (2007)
Google Scholar
Custódio, A.L., Vicente, L.N.: SID-PSM: A Pattern Search Method Guided by Simplex Derivatives for Use in Derivative-Free Optimization. Departamento de Matemática, Universidade de Coimbra, Coimbra (2008)
Deming S.N., Parker L.R. Jr, Denton M.B.: A review of simplex optimization in analytical chemistry. Crit. Rev. Anal. Chem. 7, 187–202 (1974)
Article
Google Scholar
Desai, R.: A Comparison of Algorithms for Optimizing the Omega Function. Master’s thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh (2010)
Eberhart, R.,Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, pp. 39–43 (1995)
Eldred, M.S., Adams, B.M., Gay, D.M., Swiler, L.P., Haskell, K., Bohnhoff, W.J., Eddy, J.P., Hart, W.E., Watson, J-P, Hough, P.D., Kolda, T.G., Williams, P.J., Martinez-Canales, M.L., DAKOTA, A.: Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 4.2 User’s Manual. Sandia National Laboratories, Albuquerque (2008)
Fan S.S., Zahara E.: A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper. Res. 181, 527–548 (2007)
Article
Google Scholar
Finkel D.E., Kelley C.T.: Additive scaling and the DIRECT algorithm. J. Glob. Optim. 36, 597–608 (2006)
Article
Google Scholar
Fowler K.R., Reese J.P., Kees C.E., Dennis J.E. Jr, Kelley C.T., Miller C.T., Audet C., Booker A.J., Couture G., Darwin R.W., Farthing M.W., Finkel D.E., Gablonsky J.M., Gray G., Kolda T.G.: A comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water Resour. 31, 743–757 (2008)
Article
Google Scholar
Gablonsky, J.M.: Modifications of the DIRECT Algorithm. PhD thesis, Department of Mathematics, North Carolina State University, Raleigh (2001)
Gilmore P., Kelley C.T.: An implicit filtering algorithm for optimization of functions with many local minima. SIAM J. Optim. 5, 269–285 (1995)
Article
Google Scholar
GLOBAL Library. http://www.gamsworld.org/global/globallib.htm
Gray G., Kolda T., Sale K., Young M.: Optimizing an empirical scoring function for transmembrane protein structure determination. INFORMS J. Comput. 16, 406–418 (2004)
Article
Google Scholar
Gutmann H.-M.: A radial basis function method for global optimization. J. Glob. Optim. 19, 201–227 (2001)
Article
Google Scholar
Han J., Kokkolaras M., Papalambros P.Y.: Optimal design of hybrid fuel cell vehicles. J. Fuel Cell Sci. Technol. 5, 041014 (2008)
Article
Google Scholar
Hansen, N.: The CMA Evolution Strategy: A tutorial. http://www.lri.fr/hansen/cmaesintro.html
Hansen N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E. (eds) Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms, pp. 75–102. Springer, Berlin (2006)
Chapter
Google Scholar
Hayes R.E., Bertrand F.H., Audet C., Kolaczkowski S.T.: Catalytic combustion kinetics: using a direct search algorithm to evaluate kinetic parameters from light-off curves. Can. J. Chem. Eng. 81, 1192–1199 (2003)
Article
Google Scholar
Holland J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)
Google Scholar
Holmström, K.: Private Communication (2009)
Holmström, K., Göran, A.O., Edvall, M.M.: User’s Guide for TOMLAB 7. Tomlab Optimization. http://tomopt.com
Holmström, K., Göran, A.O., Edvall, M.M.: User’s Guide for TOMLAB/CGO. Tomlab Optimization (2007). http://tomopt.com
Holmström, K., Göran, A.O., Edvall, M.M.: User’s Guide for TOMLAB/OQNLP. Tomlab Optimization (2007). http://tomopt.com
Holmström K., Quttineh N.-H., Edvall M.M.: An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization. Optim. Eng. 9, 311–339 (2008)
Article
Google Scholar
Hooke R., Jeeves T.A.: Direct search solution of numerical and statistical problems. J. Assoc. Comput. Mach. 8, 212–219 (1961)
Article
Google Scholar
Huyer W., Neumaier A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–355 (1999)
Article
Google Scholar
Huyer W., Neumaier A.: SNOBFIT—Stable noisy optimization by branch and fit. ACM Trans. Math. Softw. 35, 1–25 (2008)
Article
Google Scholar
Hvattum L.M., Glover F.: Finding local optima of high-dimensional functions using direct search methods. Eur. J. Oper. Res. 195, 31–45 (2009)
Article
Google Scholar
Ingber, L.: Adaptive Simulated Annealing (ASA). http://www.ingber.com/#ASA
Järvi, T.: A Random Search Optimizer with an Application to a Max–Min Problem. Technical report, Pulications of the Institute for Applied Mathematics, University of Turku (1973)
Jones D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21, 345–383 (2001)
Article
Google Scholar
Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. 1, pp. 431–440. Kluwer, Boston (2001)
Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)
Article
Google Scholar
Jones D.R., Schonlau M., Welch W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)
Article
Google Scholar
Kelley, C.T.: Users Guide for IMFIL version 1.0. http://www4.ncsu.edu/ctk/imfil.html
Kelley C.T.: Detection and remediation of stagnation in the Nelder–Mead algorithm using a sufficient decrease condition. SIAM J. Optim. 10, 43–55 (1999)
Article
Google Scholar
Kelley C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)
Book
Google Scholar
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, pp. 1942–1948 (1995)
Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Article
Google Scholar
Kolda T.G., Lewis R.M., Torczon V.J.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)
Article
Google Scholar
Kolda T.G., Torczon V.J.: On the convergence of asynchronous parallel pattern search. SIAM J. Optim. 14, 939–964 (2004)
Article
Google Scholar
Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)
Article
Google Scholar
LeDigabel, S.: NOMAD User Guide Version 3.3. Technical report, Les Cahiers du GERAD (2009)
Lewis R.M., Torczon V.J.: Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9, 1082–1099 (1999)
Article
Google Scholar
Lewis R.M., Torczon V.J.: Pattern search algorithms for linearly constrained minimization. SIAM J. Optim. 10, 917–941 (2000)
Article
Google Scholar
Lewis R.M., Torczon V.J.: A globally convergent augmented lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. Optim. 12, 1075–1089 (2002)
Article
Google Scholar
Liepins G.E., Hilliard M.R.: Genetic algorithms: foundations and applications. Ann. Oper. Res. 21, 31–58 (1989)
Article
Google Scholar
Lin Y., Schrage L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657–668 (2009)
Article
Google Scholar
Lucidi S., Sciandrone M.: On the global convergence of derivative-free methods for unconstrained minimization. SIAM J. Optim. 13, 97–116 (2002)
Article
Google Scholar
Lukšan, L., Vlček, J.: Test Problems for Nonsmooth Unconstrained and Linearly Constrained Optimization. Technical report, Institute of Computer Science, Academy of Sciences of the Czech Republic (2000). http://www3.cs.cas.cz/ics/reports/v798-00.ps
Marsden A.L., Feinstein J.A., Taylor C.A.: A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 197, 1890–1905 (2008)
Article
Google Scholar
Marsden A.L., Wang M., Dennis J.E. Jr, Moin P.: Optimal aeroacustic shape design using the surrogate management framework. Optim. Eng. 5, 235–262 (2004)
Article
Google Scholar
Marsden A.L., Wang M., Dennis J.E. Jr, Moin P.: Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J. Fluid Mech. 5, 235–262 (2007)
Google Scholar
Matheron G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1967)
Article
Google Scholar
McKinnon K.I.M.: Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM J. Optim. 9, 148–158 (1998)
Article
Google Scholar
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)
Article
Google Scholar
Mongeau M., Karsenty H., Rouzé V., Hiriart-Urruty J.B.: Comparison of public-domain software for black box global optimization. Optim. Methods Softw. 13, 203–226 (2000)
Article
Google Scholar
Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20, 172–191 (2009)
Google Scholar
Mugunthan P., Shoemaker C.A., Regis R.G.: Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models. Water Resour. Res. 41, W11427 (2005)
Article
Google Scholar
Nelder J.A., Mead R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
Article
Google Scholar
Nesterov, Y.: Gradient methods for minimizing composite objective function. CORE Discussion Paper 2007/76 (2007)
Neumaier, A.: MCS: Global Optimization by Multilevel Coordinate Search. http://www.mat.univie.ac.at/neum/software/mcs/
Neumaier A., Shcherbina O., Huyer W., Vinkó T.: A comparison of complete global optimization solvers. Math. Program. 103, 335–356 (2005)
Article
Google Scholar
Oeuvray, R.: Trust-Region Methods Based on Radial Basis Functions with Application to Biomedical Imaging. PhD thesis, Institute of Mathematics, Swiss Federal Institute of Technology, Lausanne (2005, March)
Orosz J.E., Jacobson S.H.: Finite-time performance analysis of static simulated annealing algorithms. Comput. Optim. Appl. 21, 21–53 (2002)
Article
Google Scholar
Pintér, J.: Homepage of Pintér Consulting Services. http://www.pinterconsulting.com/
Pintér J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization. Algorithms, Implementations and Applications. Nonconvex Optimization and its Applications. Kluwer, Dordrecht (1995)
Google Scholar
Pintér, J.D., Holmström, K., Göran, A.O., Edvall, M.M.: User’s Guide for TOMLAB/LGO. Tomlab Optimization (2006). http://tomopt.com
Plantenga, T.D.: HOPSPACK 2.0 User Manual. Technical Report SAND2009-6265, Sandia National Laboratories, Albuquerque (2009)
Powell M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J-P. (eds) (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Kluwer, Dordrecht (1994)
Chapter
Google Scholar
Powell, M.J.D.: A direct search optimization method that models the objective by quadratic interpolation. In: Presentation at the 5th Stockholm Optimization Days (1994)
Powell, M.J.D.: Recent Research at Cambridge on Radial Basis Functions. Technical report, Department of Applied Mathematics and Theoretical Physics, University of Cambridge (1998)
Powell M.J.D.: UOBYQA: unconstrained optimization by quadratic approximation. Math. Program. 92, 555–582 (2002)
Article
Google Scholar
Powell M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo, G., Roma, M. (eds) Large-Scale Nonlinear Optimization, pp. 255–297. Springer, New York (2006)
Chapter
Google Scholar
Powell M.J.D.: Developments of NEWUOA for minimization without derivatives. IMA J. Numer. Anal. 28, 649–664 (2008)
Article
Google Scholar
Powell, M.J.D.: The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives. Technical report, Department of Applied Mathematics and Theoretical Physics, University of Cambridge (2009)
Princeton Library. http://www.gamsworld.org/performance/princetonlib/princetonlib.htm
Regis R.G., Shoemaker C.A.: Constrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31, 153–171 (2005)
Article
Google Scholar
Regis R.G., Shoemaker C.A.: Improved strategies for radial basis function methods for global optimization. J. Glob. Optim. 37, 113–135 (2007)
Article
Google Scholar
Richtarik, P.: Improved algorithms for convex minimization in relative scale. SIAM J. Optim. (2010, to appear). http://www.optimization-online.org/DB_FILE/2009/02/2226.pdf
Rios, L.M.: Algorithms for Derivative-Free Optimization. PhD thesis, Department of Industrial and Enterprise Systems Engineering, University of Illinois, Urbana (2009, May)
Romeo F., Sangiovanni-Vincentelli A.: A theoretical framework for simulated annealing. Algorithmica 6, 302–345 (1991)
Article
Google Scholar
Sacks J., Welch W.J., Mitchell T.J., Wynn H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–423 (1989)
Article
Google Scholar
Sahinidis, N.V., Tawarmalani, M.: BARON 7.5: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2005)
Sandia National Laboratories: The Coliny Project. https://software.sandia.gov/trac/acro/wiki/Overview/Projects
Scheinberg, K.: Manual for Fortran Software Package DFO v2.0 (2003)
Schonlau, M.: Computer Experiments and Global Optimization. PhD thesis, Department of Statistics, University of Waterloo, Waterloo (1997)
Serafini, D.B.: A Framework for Managing Models in Nonlinear Optimization of Computationally Expensive Functions. PhD thesis, Department of Computational and Applied Mathematics, Rice University, Houston (1998, Nov)
Shah, S.B., Sahinidis, N.V.: SAS-Pro: Simultaneous residue assignment and structure superposition for protein structure alignment. PLoS ONE 7(5), e37493 (2012)
Shubert B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9, 379–388 (1972)
Article
Google Scholar
Smith R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 32, 1296–1308 (1984)
Article
Google Scholar
Søndergaard, J.: Optimization Using Surrogate Models—by the Space Mapping Technique. PhD thesis, Technical University of Denmark, Department of Mathematical Modelling, Lingby (2003)
Spendley W., Hext G.R., Himsworth F.R.: Sequential application for simplex designs in optimisation and evolutionary operation. Technometrics 4, 441–461 (1962)
Article
Google Scholar
Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)
Article
Google Scholar
Torczon V.J.: On the convergence of multidirectional search algorithms. SIAM J. Optim. 1, 123–145 (1991)
Article
Google Scholar
Torczon V.J.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)
Article
Google Scholar
Tseng P.: Fortified-descent simplicial search method: a general approach. SIAM J. Optim. 10, 269–288 (1999)
Article
Google Scholar
Vaz, A.I.F.: PSwarm Home Page. http://www.norg.uminho.pt/aivaz/pswarm/
Vaz A.I.F., Vicente L.N.: A particle swarm pattern search method for bound constrained global optimization. J. Glob. Optim. 39, 197–219 (2007)
Article
Google Scholar
Wang, H.: Application of Derivative-Free Algorithms in Powder Diffraction. Master’s thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh (2011)
Wild S.M., Regis R.G., Shoemaker C.A.: ORBIT: Optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30, 3197–3219 (2008)
Article
Google Scholar
Winfield, D.: Function and Functional Optimization by Interpolation in Data Tables. PhD thesis, Harvard University, Cambridge (1969)
Winslow, T.A., Trew, R.J., Gilmore, P., Kelley, C.T.: Simulated performance optimization of gaas mesfet amplifiers. In: IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, Piscataway, pp. 393–402 (1991)
Zhao Z., Meza J.C., Van Hove M.: Using pattern search methods for surface structure determination of nanomaterials. J. Phys. Condens. Matter 18, 8693–8706 (2006)
Article
Google Scholar
Zheng, Y.: Pairs Trading and Portfolio Optimization. Master’s thesis, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh (2011)