Journal of Global Optimization

, Volume 55, Issue 1, pp 165–188 | Cite as

A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization

  • Massimiliano Kaucic


In this paper we present a multi-start particle swarm optimization algorithm for the global optimization of a function subject to bound constraints. The procedure consists of three main steps. In the initialization phase, an opposition learning strategy is performed to improve the search efficiency. Then a variant of the adaptive velocity based on the differential operator enhances the optimization ability of the particles. Finally, a re-initialization strategy based on two diversity measures for the swarm is act in order to avoid premature convergence and stagnation. The strategy uses the super-opposition paradigm to re-initialize particles in the swarm. The algorithm has been evaluated on a set of 100 global optimization test problems. Comparisons with other global optimization methods show the robustness and effectiveness of the proposed algorithm.


Particle swarm optimization Restart techniques Opposition-based computing Hybrid methods Bound constrained optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali M.M., Khompatraporn C., Zabinsky Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005)CrossRefGoogle Scholar
  2. 2.
    Angeline, P.: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: IEEE Press (Ed.) Proceedings of the Seventh Annual Conference on Evolutionary Programming, EP VII, vol. 1447. Lecture Notes in Computer Science, pp. 601–610 (1998)Google Scholar
  3. 3.
    Bartz-Beielstein T.: Experimental Research in Evolutionary Computation—The New Experimentalism. Springer, Berlin (2006)Google Scholar
  4. 4.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp. 120–127 (2007)Google Scholar
  5. 5.
    Clerc, M.: The swarm and the queen: towards a deterministic adaptive particle swarm optimization. In: Proceedings of the Congress of Evolutionary Computation, vol. 3, pp. 1951–1957. Washington, DC (1999)Google Scholar
  6. 6.
    Das, S., Abraham, A., Konar, A.: Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. In: Liu, Y., Sun, A., Loh, H.T., Lu, W.F., Lim, E.P. (eds.) Studies in Computational Intelligence (SCI), vol. 116, pp. 1–38. Springer, Berlin (2008)Google Scholar
  7. 7.
    Das, S., Konar, A., Chakraborty, U.K.: Particle swarm optimization with a differentially perturbed velocity. In: ACM-SIGEVO Proceedings of GECCO ’05, pp. 991–998. Washington, DC, USA (2005)Google Scholar
  8. 8.
    de Carvalho D.F., Bastos-Filho C.J.A.: Clan particle swarm optimization. Int. J. Intell. Comput. Cybern. 2(2), 197–227 (2009)CrossRefGoogle Scholar
  9. 9.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, pp. 39–43. Nagoya, Japan (1995)Google Scholar
  10. 10.
    Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In: IEEE Press (Ed.) Proceedings of the Seventh Annual Conference on Evolutionary Programming, EP VII, vol. 1447. Lecture Notes in Computer Science, pp. 601–610 (1998)Google Scholar
  11. 11.
    Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the IEEE Congress of Evolutionary Computation, pp. 81–86. Seoul, Korea (2001)Google Scholar
  12. 12.
    Evers, G.: An automatic regrouping mechanism to deal with stagnation in particle swarm optimization. Master’s thesis, Electrical Engeneering Department, The University of Texas-Pan American, Edinburg, TX (2009)Google Scholar
  13. 13.
    Finkel, D.E.: DIRECT: optimizaion algorithm user guide. North Carolina State University. (2003)
  14. 14.
    Habibi, J., Zonouz, S.A., Saneei, M.: A hybrid PS-based optimization algorithm for solving traveling salesman problem. In: IEEE Symposium on Frontiers in Networking with Applications (FINA 2006), pp. 18–20. Vienna, Austria (2006)Google Scholar
  15. 15.
    Jabeen, H., Jalil, Z., Baig, A.R.: Opposition based initialization in particle swarm optimization (O-PSO). In: GECCO (Companion), pp. 2047–2052 (2009)Google Scholar
  16. 16.
    Jiao B., Lian Z., Gu X.: A dynamic inertia weight particle swarm optimization algorithm. Chaos Solitons Fractals 37, 698–705 (2008)CrossRefGoogle Scholar
  17. 17.
    Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: IEEE Press (Ed.) Proceedings of the 1999 Congress of Evolutionary Computation, vol. 3, pp. 1931–1938 (1999)Google Scholar
  18. 18.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. Piscataway, NJ (1995)Google Scholar
  19. 19.
    Krink, T., Vesterstrøm, J., Riget, J.: Particle swarm optimization with spatial particle extension. In: IEEE Press (Ed.) Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1474–1479 (2002)Google Scholar
  20. 20.
    Lopes, H.S., Coelho, L.S.: Particle swarm optimization with fast local search for the blind traveling salesman problem. In: Proceedings of Fifth International Conference on Hybrid Intelligent Systems (HIS’05), pp. 245–250. Rio de Janeiro, Brazil (2005)Google Scholar
  21. 21.
    Lu H., Chen W.: Self-adaptive velocity particle swarm optimization for solving constrained optimization problems. J. Glob. Optim. 31, 427–445 (2008)CrossRefGoogle Scholar
  22. 22.
    Mishra, S.: Some new test functions for global optimization and performance of repulsive particle swarm method. MPRA Paper 2718, North-Eastern Hill University, Department of Economics, Shillong, India (2006)Google Scholar
  23. 23.
    Pant, M., Radha, T., Singh, V.P.: A simple diversity guided particle swarm optimization. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3294–3299. Singapore (2007)Google Scholar
  24. 24.
    Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-based differential evolution algorithms. In: IEEE Congress on Evolutionary Computation, pp. 7363–7370 (2006)Google Scholar
  25. 25.
    Rahnamayan S., Tizhoosh H.R., Salama M.M.A.: A novel population initialization method for accelerating evolutionary algorithms. Comput. Math. Appl. 53, 1605–1614 (2007)CrossRefGoogle Scholar
  26. 26.
    Rahnamayan S., Tizhoosh H.R., Salama M.M.A.: Opposition versus randomness in soft computing techniques. Appl. Soft Comput. 8(2), 906–918 (2008)CrossRefGoogle Scholar
  27. 27.
    Riget, J., Vesterstrøm, J.S.: A diversity-guided particle swarm optimizer—the ARPSO. Technical Report 2000-02, EVALife, Department of Computer Science, Aarhus, Denmark (2002)Google Scholar
  28. 28.
    Shahzad, F., Baig, A.R., Masood, S., Kamran, M., Naveed, N.: Opposition-based swarm optimization with velocity clamping (OVCPSO). In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelligence, volume 116/2009 of AISC. pp. 339–348. Springer, Berlin (2009)Google Scholar
  29. 29.
    Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, vol. 1447. Lecture Notes in Computer Science, pp. 591–600. Springer, Berlin (1998)Google Scholar
  30. 30.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE Press (Ed.) Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73. Piscataway, NJ, USA (1998)Google Scholar
  31. 31.
    Shi Y., Eberhart R.C.: Monitoring of particle swarm optimization. Frontiers Comput. Sci. China. 3(1), 31–37 (2009)CrossRefGoogle Scholar
  32. 32.
    Singh S.K., Borah M.: A comparative performance of swarm intelligence optimization method and evolutionary optimization method on some noisy numerical benchmark test problems. Int. J. Comput. Appl. Math. 4(1), 1–9 (2009)Google Scholar
  33. 33.
    Tizhoosh H.R.: Opposition-based reinforcement learning. J. Adv. Comput. Intell. Intell. Inf. 10(4), 578–585 (1998)Google Scholar
  34. 34.
    Tizhoosh, H.R., Hamid, R.: Opposition-based learning: a new scheme for machine intelligence. In: CIMCA ’05: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, vol. 1 (CIMCA-IAWTIC’06), pp. 695–701. IEEE Computer Society, Washington, DC, USA (2005)Google Scholar
  35. 35.
    Tizhoosh, H.R., Ventresca, M., Rahnamayan, S.: Oppositional Concepts in Computational Intelligence, vol. 155 of Studies in Computational Intelligence, chapter Opposition-Based Computing, pp. 11–28. Springer, Berlin (2008)Google Scholar
  36. 36.
    Trelea I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)CrossRefGoogle Scholar
  37. 37.
    van den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. thesis, Faculty of Natural and Agricultural Science, University of Pretoria, South Africa (2001)Google Scholar
  38. 38.
    van den Bergh, F., Engelbrecht, A.: A new locally convergent particle swarm optimizer. In: IEEE Press (Ed.) Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, vol. 3, pp. 96–101 (2002)Google Scholar
  39. 39.
    Vaz A.I., Vicente L.N.: A particle swarm pattern search method for bound constrained global optimization. J. Glob. Optim. 33(2), 197–219 (2007)CrossRefGoogle Scholar
  40. 40.
    Ventresca S., Rahnamayan S., Tizhoosh H.R.: A note on “Opposition versus randomness in soft computing techniques” [Appl. Soft Comput] 8(2) (2008) 906–918. Appl. Soft Comput. 10, 956–957 (2010)CrossRefGoogle Scholar
  41. 41.
    Wang, H., Liu, Y., Zeng, S.: Opposition-based particle swarm optimization algorithm with Cauchy mutation. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp. 4750–4756. Singapore (2007)Google Scholar
  42. 42.
    Muñoz Zavala, A.E., Aguirre, A.H., Villa Diharce, E.R.: Constrained optimization via particle evolutionary swarm optimization algorithm (PESO). In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 209–216. Washington, DC, USA (2005)Google Scholar
  43. 43.
    Muñoz Zavala A.E., Aguirre A.H., Villa Diharce E.R., Botello Rionda S.: Constrained optimization with an improved particle swarm optimization algorithm. Int. J. Intell. Comput. Cybern. 1(3), 425–453 (2008)CrossRefGoogle Scholar
  44. 44.
    Zhan Z.H., Zhang J., Li Y., Chung H.S.H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. 39(6), 1362–1381 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.University of TriesteTriesteItaly

Personalised recommendations