Advertisement

Journal of Global Optimization

, Volume 55, Issue 2, pp 253–259 | Cite as

On existence and essential components for solution set for system of strong vector quasi-equilibrium problems

  • Zhe Yang
  • Yong Jian Pu
Article

Abstract

In this paper, we study the system of strong vector quasi-equilibrium problems without assuming that the dual of the ordering cone has a weak* compact base. We show the existence and essential components of solution set for system of strong vector quasi-equilibrium problems by defining the best-reply mapping.

Keywords

System of strong vector quasi-equilibrium problems System of strong vector equilibrium problems Strong vector quasi-equilibrium problems Existence Essential components 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansari Q.H., Schaible S., Yao J.C.: The system of generalized vector equilibrium problems with applications. J. Global Optim. 22, 3–16 (2002)CrossRefGoogle Scholar
  2. 2.
    Hillas J.: On the definition of the strategic stability of equilibria. Econometrica 58, 1365–1390 (1990)CrossRefGoogle Scholar
  3. 3.
    Jameson, G.: Order Linear Spaces. In: Lector Notes in Math, vol. 141. Springer, Berlin (1970)Google Scholar
  4. 4.
    Gong X.H.: Efficiency and Henig efficiency for vector equilibrium problem. J. Optim. Theory Appl. 108, 139–154 (2001)CrossRefGoogle Scholar
  5. 5.
    Gong X.H.: Strong vector equilibrium problem. J. Global Optim. 36, 339–349 (2006)CrossRefGoogle Scholar
  6. 6.
    Hou, S.H., Gong, X.H., Yang, X.M.: Existence and stability of solutions for generalized strong vector equilibrium problems with trifunctions. J. Optim. Theory Appl. (in press)Google Scholar
  7. 7.
    Jiang J.H.: Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games. Sci. Sin. 12, 951–964 (1963)Google Scholar
  8. 8.
    Kohlberg E., Mertens J.F.: On the strategic stability of equilibria. Econometrica 54, 1003–1037 (1986)CrossRefGoogle Scholar
  9. 9.
    Yang H., Yu J.: On essential components of the set of weakly Pareto–Nash equilibrium points. Appl. Math. Lett. 15, 553–560 (2002)CrossRefGoogle Scholar
  10. 10.
    Yu J., Luo Q.: On essential components of the solution set of generalized games. J. Math. Anal. Appl. 230, 303–310 (1999)CrossRefGoogle Scholar
  11. 11.
    Yu J., Xiang S.W.: On essential components of the set of Nash equilibrium points. Nonlinear Anal. Theory Methods Appl. 38, 259–264 (1999)CrossRefGoogle Scholar
  12. 12.
    Deguire P., Tan K.-K., Yuan X.-Z.: The study of maximal elements, fixed points for L s-majorized mapping and their applications to minimax and variational inequalities in the product topological spaces. Nonlinear Anal. Theory Methods Appl. 37, 933–951 (1999)CrossRefGoogle Scholar
  13. 13.
    Fan K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)Google Scholar
  14. 14.
    Wu X., Shen S.K.: A further generalization of Yannelis–Prabhakars continuous selection theorem and its applications. J. Math. Anal. Appl. 197, 61–74 (1996)CrossRefGoogle Scholar
  15. 15.
    Wu X., Yuan X.-Z.: On equilibrium problem of abstract economy, generalized quasi-variational inequality, and an optimization problem in locally H-convex spaces. J. Math. Anal. Appl 282, 495–505 (2003)CrossRefGoogle Scholar
  16. 16.
    Yu H.: Weak Pareto equilibria for multiobjective constrained games. Appl. Math. Lett. 16, 773–776 (2003)CrossRefGoogle Scholar
  17. 17.
    Yu J., Yuan G.X.-Z.: The study of Pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods. Comput. Math. Appl 35, 17–24 (1998)CrossRefGoogle Scholar
  18. 18.
    Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)CrossRefGoogle Scholar
  19. 19.
    Li X.B., Li S.J.: Existence of solutions for generalized vector quasi-equilibrium problems. Optim. Lett. 4(1), 17–28 (2010)CrossRefGoogle Scholar
  20. 20.
    Lin L.J.: System of generalized vector quasi-equilibrium problems with applications to fixed point theorems for a family of nonexpansive multivalued mappings. J. Global Optim. 34(1), 15–32 (2006)CrossRefGoogle Scholar
  21. 21.
    Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  22. 22.
    Panagiotopoulos P.D., Pardalos P.M.: From Convexity to Nonconvexity. co-editors: R.P. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  23. 23.
    Aubin J.P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York (1984)Google Scholar
  24. 24.
    Deguire P., Tan K.-K., Yuan X.-Z.: The study of maximal elements, fixed points for L s-majorized mapping and their applications to minimax and variational inequalities in the product topological spaces. Nonlinear Anal. Theory Methods Appl. 37, 933–951 (1999)CrossRefGoogle Scholar
  25. 25.
    Fan K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.College of Economics and Business AdministrationChongqing UniversityChongqingChina

Personalised recommendations