Skip to main content
Log in

Two-step projection methods for a system of variational inequality problems in Banach spaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach space E and let Π C be a sunny nonexpansive retraction from E onto C. Let the mappings \({T, S: C \to E}\) be γ 1-strongly accretive, μ 1-Lipschitz continuous and γ 2-strongly accretive, μ 2-Lipschitz continuous, respectively. For arbitrarily chosen initial point \({x^0 \in C}\) , compute the sequences {x k} and {y k} such that \({\begin{array}{ll} \quad y^k = \Pi_C[x^k-\eta S(x^k)],\\ x^{k+1} = (1-\alpha^k)x^k+\alpha^k\Pi_C[y^k-\rho T(y^k)],\quad k\geq 0, \end{array}}\) where {α k} is a sequence in [0,1] and ρ, η are two positive constants. Under some mild conditions, we prove that the sequences {x k} and {y k} converge to x* and y*, respectively, where (x*, y*) is a solution of the following system of variational inequality problems in Banach spaces: \({\left\{\begin{array}{l}\langle \rho T(y^*)+x^*-y^*,j(x-x^*)\rangle\geq 0, \quad\forall x \in C,\\\langle \eta S(x^*)+y^*-x^*,j(x-y^*)\rangle\geq 0,\quad\forall x \in C.\end{array}\right.}\) Our results extend the main results in Verma (Appl Math Lett 18:1286–1292, 2005) from Hilbert spaces to Banach spaces. We also obtain some corollaries which include some results in the literature as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antipin A.S.: Methods for solving variational inequalities with related constraints. Comput. Math. Math. Phys. 40, 1239–1254 (2007)

    Google Scholar 

  2. Cianciaruso, F., Marino, G., Muglia, L., Yao, Y.: A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem. Fixed Point Theory Appl. 2010 (Article ID 383740), 19 pp (2010)

  3. Facchinei F., Pang J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research, vols. I and II. Springer, New York (2003)

    Google Scholar 

  4. Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer, Dordrecht (2002)

    Google Scholar 

  5. Glowinski R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Google Scholar 

  6. Iusem A.N.: An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13, 103–114 (1994)

    Google Scholar 

  7. Korpelevich G.M.: An extragradient method for finding saddle points and for other problems. Ekonom. i Mat. Metody 12, 747–756 (1976)

    Google Scholar 

  8. Lions J.L., Stampacchia G.: Variational inequalities. Comm. Pure Appl. Math. 20, 493–517 (1967)

    Article  Google Scholar 

  9. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, New York (2010)

    Book  Google Scholar 

  10. Yamada I., Ogura N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    Article  Google Scholar 

  11. Yao J.C.: Variational inequalities with generalized monotone operators. Math. Oper. Res. 19, 691–705 (1994)

    Article  Google Scholar 

  12. Yao, Y., Chen, R., Liou, Y.C.: A unified implicit algorithm for solving the triple-hierarchical constrained optimization problem. Math. Comput. Model. (in press)

  13. Yao, Y., Noor, M.A., Liou, Y.C.: Strong convergence of a modified extra-gradient method to the minimum-norm solution of variational inequalities. Abstr. Appl. Anal. (in press)

  14. Yao, Y., Shahzad, N.: Strong convergence of a proximal point algorithm with general errors. Optim. Lett. doi:10.1007/s11590-011-0286-2

  15. Yao, Y., Shahzad, N.: New methods with perturbations for non-expansive mappings in Hilbert spaces. Fixed Point Theory Appl. (in press)

  16. Verma R.U.: General convergence analysis for two-step projection methods and applications to variational problems. Appl. Math. Lett. 18, 1286–1292 (2005)

    Article  Google Scholar 

  17. He B.S.: A new method for a class of linear variational inequalities. Math. Program. 66, 137–144 (1994)

    Article  Google Scholar 

  18. Nie H., Liu Z., Kim K.H., Kang S.M.: A system of nonlinear variational inequalities involving strongly monotone and pseudocontractive mappings. Adv. Nonlinear Var. Inequal. 6, 91–99 (2003)

    Google Scholar 

  19. Noor M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)

    Article  Google Scholar 

  20. Verma R.U.: Projection methods, algorithms and a new system of nonlinear variational inequalities. Comput. Math. Appl. 41, 1025–1031 (2001)

    Article  Google Scholar 

  21. Zhu D., Marcotte P.: New classes of generalized monotonicity. J. Optim. Theory Appl. 87, 457–471 (1995)

    Article  Google Scholar 

  22. Bauschke H.H., Borwein J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  Google Scholar 

  23. Kiwiel K.C.: The efficiency of subgradient projection methods for convex optimization I: general level methods. SIAM J. Control Optim. 34, 660–676 (1996)

    Article  Google Scholar 

  24. Kiwiel K.C.: The efficiency of subgradient projection methods for convex optimization II: implementations and extensions. SIAM J. Control Optim. 34, 677–697 (1996)

    Article  Google Scholar 

  25. Kiwiel K.C., Lopuch B.: Surrogate projection methods for finding fixed points of firmly nonexpansive mappings. SIAM J. Optim. 7, 1084–1102 (1997)

    Article  Google Scholar 

  26. Solodov M.V., Svaiter B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  Google Scholar 

  27. Aoyama K., Iiduka H., Takahashi W.: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, 1–13 (2006)

    Article  Google Scholar 

  28. Kamimura S., Takahashi W.: Weak and strong convergence of solutions to accretive operator inclusions and applications. Set Value. Anal. 8, 361–374 (2000)

    Article  Google Scholar 

  29. Xu H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)

    Article  Google Scholar 

  30. Xu H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  Google Scholar 

  31. Goebel K., Kirk W.A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35, 171–174 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Min Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Liou, YC. & Kang, S.M. Two-step projection methods for a system of variational inequality problems in Banach spaces. J Glob Optim 55, 801–811 (2013). https://doi.org/10.1007/s10898-011-9804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9804-0

Keywords

Mathematics Subject Classification (2000)

Navigation