Journal of Global Optimization

, Volume 54, Issue 3, pp 619–625 | Cite as

Infinitely many solutions for a double Sturm–Liouville problem



In this paper, we prove the existence of infinitely many solutions to differential problems where both the equation and the conditions are Sturm–Liouville type. The approach is based on critical point theory.


Sturm–Liouville problem Sturm–Liouville equation Multiple solutions 

Mathematics Subject Classification (2000)

34B15 34B24 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonanno G., D’Aguì G.: On the Neumann problem for elliptic equations involving the p-Laplacian. J. Math. Anal. Appl. 358, 223–228 (2009)CrossRefGoogle Scholar
  2. 2.
    Bonanno G., D’Aguì G.: A Neumann boundary value problem for the Sturm–Liouville equation. Appl. Math. Comput. 208, 318–327 (2009)CrossRefGoogle Scholar
  3. 3.
    Bonanno G., Molica Bisci G.: Infinitely many solution for a Sturm–Liouville boundary value problem. Bound. Value Prob. 2009, 1–20 (2009)Google Scholar
  4. 4.
    Bonanno G., Molica Bisci G.: Infinitely many solution for a dirichlet problem involving the p-Laplacian. Proc. Roy. Soc. Edinb. Sect. A 140, 1–16 (2009)Google Scholar
  5. 5.
    Bonanno G., Riccobono G.: Multiplicity results for Sturm–Liouville boundary problems. Appl. Math. Comput. 210, 294–297 (2009)CrossRefGoogle Scholar
  6. 6.
    Giannessi, F., Maugeri, A., Pardalos, P.M. (eds): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer, Dordrecht (2002)Google Scholar
  7. 7.
    Meziat R., Patiño D.: Exact relaxations of non-convex variational problems. Optim. Lett. 2(4), 505–519 (2008)CrossRefGoogle Scholar
  8. 8.
    Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)CrossRefGoogle Scholar
  9. 9.
    Ricceri B.: A general variational principle and some of its applications. J. Comput. Appl. Math. 133, 401–410 (2000)CrossRefGoogle Scholar
  10. 10.
    Tian Y., Ge W.: Second-order Sturm–Liouville boundary value problem involving the one dimensional p-Laplacian. Rocky Mt. J. Math. 38, 309–327 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Engineering FacultyUniversity of MessinaMessinaItaly
  2. 2.DIMETUniversity of Reggio CalabriaReggio CalabriaItaly

Personalised recommendations