Journal of Global Optimization

, Volume 54, Issue 1, pp 101–116 | Cite as

Strong convergence theorems for variational inequality problems and quasi-\({\phi}\)-asymptotically nonexpansive mappings

  • H. Zegeye
  • N. Shahzad


In this paper, we introduce an iterative process which converges strongly to a common solution of finite family of variational inequality problems for γ-inverse strongly monotone mappings and fixed point of two continuous quasi-\({\phi}\)-asymptotically nonexpansive mappings in Banach spaces. Our theorems extend and unify most of the results that have been proved for the class of monotone mappings.


Generalized projection γ-Inverse strongly monotone mappings Monotone mappings Strong convergence Variational inequality problems 

Mathematics Subject Classification (2000)

47H05 47J05 47J25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber Ya.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (eds) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Appl. Math., vol. 178, pp. 15–50. Dekker, New York (1996)Google Scholar
  2. 2.
    Kamimura S., Takahashi W.: Strong convergence of proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938–945 (2002)CrossRefGoogle Scholar
  3. 3.
    Reich S.: A weak convergence theorem for the alternating method with Bergman distance. In: Kartsatos, A.G. (eds) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Leture Notes in Pure and Appl. Math., Vol. 178, pp. 313–318. Dekker, New York (1996)Google Scholar
  4. 4.
    Cioranescu I.: Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems. Kluwer Academic publishers, Amsterdam (1990)CrossRefGoogle Scholar
  5. 5.
    Takahashi W.: Nonlinear Functional Analysis (Japanese). Kindikagaku, Tokyo (1988)Google Scholar
  6. 6.
    Qin X., Cho Y.J., Kang S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spces. J. Comput. Appl. Math. 230, 121–127 (2009)CrossRefGoogle Scholar
  7. 7.
    Kinderlehrer D., Stampaccia G.: An Iteration to Variational Inequalities and Their Applications. Academic Press, New York (1990)Google Scholar
  8. 8.
    Lions J.L., Stampacchia G.: Variational inequalities. Comm. Pure Appl. Math. 20, 493–517 (1967)CrossRefGoogle Scholar
  9. 9.
    Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, vol. 58. Springer, Berlin (2002)Google Scholar
  10. 10.
    Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, New York (2010)CrossRefGoogle Scholar
  11. 11.
    Floudas C.A., Pardalos P.M.: Encyclopedia of Optimization, 2nd edn. Springer, Berlin (2009)CrossRefGoogle Scholar
  12. 12.
    Iiduka H., Takahashi W., Toyoda M.: Approximation of solutions of variational inequalities for monotone mappings. Panamer. Math. J. 14, 49–61 (2004)Google Scholar
  13. 13.
    Iiduka H., Takahashi W.: Weak convergence of projection algorithm for variational inequalities in Banach spaces. J. Math. Anal. Appl. 339, 668–679 (2008)CrossRefGoogle Scholar
  14. 14.
    Nakajo K., Takahashi W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semi-groups. J. Math. Anal. Appl. 279, 372–379 (2003)CrossRefGoogle Scholar
  15. 15.
    Solodove M.V., Svaiter B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program 87, 189–202 (2000)Google Scholar
  16. 16.
    Iiduka H., Takahashi W.: Strong convergence by Hybrid type method for monotone operators in a Banach space. Nonlinear Anal. 68, 3679–3688 (2008)CrossRefGoogle Scholar
  17. 17.
    Zegeye, H., Shahzad, N.: Approximating common solution of variational inequality problems for two monotone mappings in Banach spaces. Optim. Lett. doi: 10.1007/s11590-010-0235-5
  18. 18.
    Zegeye H., Shahzad N.: A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems. Nonlinear Anal. 74, 263–272 (2011)CrossRefGoogle Scholar
  19. 19.
    Zegeye H., Shahzad N.: A hybrid approximation method for equilibrium, variational inequality and fixed point problems. Nonlinear Anal. Hybrid Syst. 4, 619–630 (2010)CrossRefGoogle Scholar
  20. 20.
    Xu H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991)CrossRefGoogle Scholar
  21. 21.
    Zegeye H., Ofoedu E.U., Shahzad N.: Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasi-nonexpansive mappings. Appl. Math. Comput. 216, 3439–3449 (2010)CrossRefGoogle Scholar
  22. 22.
    Tan K.-K., Xu H.K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301–308 (1993)CrossRefGoogle Scholar
  23. 23.
    Matsushita S., Takahashi W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J. Approx. Theory 134, 257–266 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Departement of MathematicsUniversity of BotswanaGaboroneBotswana
  2. 2.Department of MathematicsKing Abdul Aziz UniversityJeddahSaudi Arabia

Personalised recommendations