Journal of Global Optimization

, Volume 52, Issue 4, pp 843–853 | Cite as

Stability properties of the Tikhonov regularization for nonmonotone inclusions

  • Michaël Gaydu


We study the Tikhonov regularization for perturbed inclusions of the form \({T(x) \ni y^*}\) where T is a set-valued mapping defined on a Banach space that enjoys metric regularity properties and y* is an element near 0. We investigate the case when T is metrically regular and strongly regular and we show the existence of both a solution x* to the perturbed inclusion and a Tikhonov sequence which converges to x*. Finally, we show that the Tikhonov sequences associated to the perturbed problem inherit the regularity properties of the inverse of T.


Tikhonov regularization Set-valued mapping Metric regularity Strong regularity 

Mathematics Subject Classification (2000)

49J53 49J40 90C48 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhäuser, Boston (1990)Google Scholar
  2. 2.
    Dontchev A.L., Lewis A.S., Rockafellar R.T.: The radius of metric regularity. Trans. AMS 355(2), 493–517 (2002)CrossRefGoogle Scholar
  3. 3.
    Dontchev A.L., Rockafellar R.T.: Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12, 79–109 (2004)CrossRefGoogle Scholar
  4. 4.
    Dontchev, A.L., Rockafellar, R.T.: Implcit Functions and Solution Mappings. A View from Variational Analysis, Springer Mathematics Monographs (2009)Google Scholar
  5. 5.
    Gaydu M., Geoffroy M.H.: Tikhonov regularization of metrically regular inclusions. Positivity 13(2), 385–398 (2009)CrossRefGoogle Scholar
  6. 6.
    Horst R., Pardalos P.M., Thoai N.V.: Introduction to Global Optimization, Second Edition, Nonconvex Optimization and its Applications, vol. 48. Kluwer, Boston (2000)Google Scholar
  7. 7.
    Ioffe, A.D.: Metric regularity and subdifferential calculus. Uspekhi Matematicheskikh Nauk 55(3), 103–162 (2000). English translation in Russian Mathematical Surveys 55, 501–558 (2000)Google Scholar
  8. 8.
    Mordukhovich B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Am. Math. Soc. 340(1), 1–35 (1993)CrossRefGoogle Scholar
  9. 9.
    Mordukhovich B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer, Berlin (2006)Google Scholar
  10. 10.
    Moudafi A.: A remark on the convergence of the Tikhonov regularization without monotonicity. Math. Ineq. Appl. 7(2), 283–288 (2004)Google Scholar
  11. 11.
    Rockafellar R.T., Wets R.J.-B.: Variational Analysis. Springer, Berlin (1997)Google Scholar
  12. 12.
    Tikhonov A., Arsenine V.: Méthodes de résolution de problèmes mal posés (French). Editions Mir, Moscow (1976)Google Scholar
  13. 13.
    Tossings P.: The perturbed Tikhonov’s algorithm and some of its applications. RAIRO Modl. Math. Anal. Numer. 28(1 2), 189–221 (1994)Google Scholar
  14. 14.
    Sahu, D.R., Yao, J.C.: The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces Online first:
  15. 15.
    Xiao Y.-B., Huang N.-J.: Browder–Tikhonov regularization for a class of evolution second order hemivariational inequalities. J. Global Optim. 45(3), 371–388 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.LAMIA, Dpt. de MathématiquesUniversité Antilles-GuyanePointe-à-Pitre, GuadeloupeFrance

Personalised recommendations