Journal of Global Optimization

, Volume 52, Issue 1, pp 79–94 | Cite as

Characterizations for solidness of dual cones with applications

  • Y. Chiang


In this paper, some characterizations for the solidness of dual cones are established. As applications, we prove that a Banach space is reflexive if it contains a solid pointed closed convex cone having a weakly compact base, and prove an analogue of a Karamardian’s result for the linear complementarity problem in reflexive Banach spaces. The uniqueness of the solution of the linear complementarity problem is also discussed.


Base for convex cone Order-unit norm Minkowski functional Linear complementarity problem Globally solvable property 

Mathematics Subject Classification (2000)

52A07 90C33 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfsen, E.M.: Compact convex sets and boundary integrals. Ergebnisse der Math., vol. 57. Springer, Berlin (1971)Google Scholar
  2. 2.
    Chiang Y.: Variational inequalities on weakly compact sets. J. Global Optim. 46, 465–473 (2010)CrossRefGoogle Scholar
  3. 3.
    Conway, J.B.: A Course in Functional Analysis. Grad. Texts in Math., vol. 96. Springer, New York (1985)Google Scholar
  4. 4.
    Gowda M.S., Sznajder R.: Some global uniqueness and solvability results for linear complementarity problems over symmetric cones. SIAM J. Optim. 18, 461–481 (2007)CrossRefGoogle Scholar
  5. 5.
    Holmes, R.B.: Geometric Functional Analysis and Its Applications. Grad. Texts in Math., vol. 24. Springer, New York (1975)Google Scholar
  6. 6.
    Isac G.: Topological Methods in Complementarity Theory. Kluwer, Dordrecht (2000)Google Scholar
  7. 7.
    Karamardian S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)CrossRefGoogle Scholar
  8. 8.
    Karamardian S.: An existence theorem for the complementarity problem. J. Optim. Theory Appl. 19, 227–232 (1976)CrossRefGoogle Scholar
  9. 9.
    Köthe G.: Topological Vector Spaces I. Springer, Berlin (1983)Google Scholar
  10. 10.
    Narici L., Beckenstein E.: Topological Vector Spaces. Marcel Dekker Inc., NY (1985)Google Scholar
  11. 11.
    Peressini A.L.: Ordered Topological Vector Spaces. Haper and Row, New York (1967)Google Scholar
  12. 12.
    Schaefer H.H., Wolff M.P.: Topological Vector Spaces, 2nd edn. Springer, New York (1999)CrossRefGoogle Scholar
  13. 13.
    Upmerier H.: Symmetric Banach Manifolds and Jordan C*-Algebra. North-Holland, Amsterdam (1985)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Applied MathematicsNational Sun Yat-sen UniversityKaohsiungTaiwan, R.O.C.

Personalised recommendations