Advertisement

Journal of Global Optimization

, Volume 53, Issue 2, pp 231–241 | Cite as

Local boundedness of monotone bifunctions

  • Mohammad Hossein Alizadeh
  • Nicolas Hadjisavvas
Article

Abstract

We consider bifunctions \({F : C\times C\rightarrow \mathbb{R}}\) where C is an arbitrary subset of a Banach space. We show that under weak assumptions, monotone bifunctions are locally bounded in the interior of their domain. As an immediate corollary, we obtain the corresponding property for monotone operators. Also, we show that in contrast to maximal monotone operators, monotone bifunctions (maximal or not maximal) can also be locally bounded at the boundary of their domain; in fact, this is always the case whenever C is a locally polyhedral subset of \({\mathbb{R}^{n}}\) and F(x, ·) is quasiconvex and lower semicontinuous.

Keywords

Monotone bifunction Equilibrium problem Locally bounded operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allevi E., Gnudi A., Schaible S., Vespucci M.T.: Equilibrium and least element problems for multivalued functions. J. Glob. Optim. 46, 561–569 (2010)CrossRefGoogle Scholar
  2. 2.
    Ait Mansour M., Chbani Z., Riahi H.: Recession bifunction and solvability of noncoercive equilibrium problems. Commun. Appl. Anal. 7, 369–377 (2003)Google Scholar
  3. 3.
    Aoyama K., Kimura Y., Takahashi W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15, 395–409 (2008)Google Scholar
  4. 4.
    Bianchi M., Pini R.: A note on equilibrium problems with properly quasimonotone bifunctions. J. Glob. Optim. 20, 67–76 (2001)CrossRefGoogle Scholar
  5. 5.
    Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)Google Scholar
  6. 6.
    Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop and Miniconference on Functional Analysis and Optimization (Canberra, 1988), pp. 59–65. Australian National University, Canberra (1988)Google Scholar
  7. 7.
    Flores-Bazan F.: Existence theorems for generalized noncoercive equilibrium problems: the quasiconvex case. SIAM J. Optim. 11, 675–690 (2000)CrossRefGoogle Scholar
  8. 8.
    Hadjisavvas N., Khatibzadeh H.: Maximal monotonicity of bifunctions. Optimization 59, 147–160 (2010)CrossRefGoogle Scholar
  9. 9.
    Iusem A., Kassay G., Sosa W.: An existence result for equilibrium problems with some surjectivity consequences. J. Convex Anal. 16, 807–826 (2009)Google Scholar
  10. 10.
    Kassay G.: On equilibrium problems. In: Chinchuluun, A., Pardalos, P.M., Enkhbat, R., Tseveendorj, I. (eds) Optimization and Optimal Control: Theory and Applications, pp. 55–83. Springer, New York, Dordrecht, Heidelberg, London (2010)CrossRefGoogle Scholar
  11. 11.
    Konnov I.V.: Regularization method for nonmonotone equilibrium problems. J. Nonlinear Convex Anal. 10, 93–101 (2009)Google Scholar
  12. 12.
    Konnov, I.V., Dyabilkin, D.A.: Nonmonotone equilibrium problems: coercivity conditions and weak regularization. J. Glob. Optim. doi: 10.1007/s10898-010-9551-7
  13. 13.
    Krauss E.: A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions. Nonlinear Anal. Theory Methods Appl. 9, 1381–1399 (1985)CrossRefGoogle Scholar
  14. 14.
    Moudafi, A., Thera, M.: Proximal and dynamical approaches to equilibrium problem. In: Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 187–201. Springer, New York (1999)Google Scholar
  15. 15.
    Rockafellar R.T.: Local boundedness of nonlinear monotone operators. Mich. Math. J. 16, 397–407 (1969)CrossRefGoogle Scholar
  16. 16.
    Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Mohammad Hossein Alizadeh
    • 1
  • Nicolas Hadjisavvas
    • 1
  1. 1.Department of Product and Systems Design EngineeringUniversity of the AegeanErmoúpolis, SyrosGreece

Personalised recommendations