Skip to main content
Log in

On linear programs with linear complementarity constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The paper is a manifestation of the fundamental importance of the linear program with linear complementarity constraints (LPCC) in disjunctive and hierarchical programming as well as in some novel paradigms of mathematical programming. In addition to providing a unified framework for bilevel and inverse linear optimization, nonconvex piecewise linear programming, indefinite quadratic programs, quantile minimization, and 0 minimization, the LPCC provides a gateway to a mathematical program with equilibrium constraints, which itself is an important class of constrained optimization problems that has broad applications. We describe several approaches for the global resolution of the LPCC, including a logical Benders approach that can be applied to problems that may be infeasible or unbounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed S., Shapiro A.: Solving chance-constrained stochastic programs via sampling and integer programming. In: Chen, Z.L., Raghavan, S. (eds) TutORials in Operations Research, chapter 12, pp. 261–269. INFORMS, London (2008)

    Google Scholar 

  2. Ahuja R.K., Orlin J.B.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)

    Article  Google Scholar 

  3. Anandalingam G., Friesz T.L.: Hierarchical optimization: an introduction. Ann. Oper. Res. 34(1), 1–11 (1992)

    Article  Google Scholar 

  4. Audet C., Savard G., Zghal W.: New branch-and-cut algorithm for bilevel linear programming. J. Optim. Theory Appl. 38(2), 353–370 (2007)

    Article  Google Scholar 

  5. Balas E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)

    Article  Google Scholar 

  6. Balas E., Ceria S., Cornuéjols G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Program. 58, 295–324 (1993)

    Article  Google Scholar 

  7. Balas E., Perregaard M.: Lift-and-project for mixed 0-1 programming: recent progress. Dis. Appl. Math. 123(1–3), 129–154 (2002)

    Article  Google Scholar 

  8. Balas E., Perregaard M.: A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming. Math. Program. 94(2-3), 221–245 (2003)

    Article  Google Scholar 

  9. Bennett, K.P., Ji, X., Hu, J., Kunapuli, G., Pang, J.-S.: Model selection via bilevel programming. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN’06) Vancouver, pp. 1922–1929. B.C. Canada, July 16–21 (2006)

  10. Burer S., Vandenbussche D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    Article  Google Scholar 

  11. Burer S., Vandenbussche D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43(2), 181–195 (2009)

    Article  Google Scholar 

  12. Chang M.W., Lin C.J.: Leave-one-out bounds for support vector regression model selection. Neural Comput. 17, 1188–1222 (2005)

    Article  Google Scholar 

  13. Chapelle O., Vapnik V., Bousquet O., Mukherjee S.: Choosing multiple parameters with support vector machines. Mach. Learn. 46, 131–159 (2002)

    Article  Google Scholar 

  14. Chung K.W., Kao W.C., Sun C.L., Wang L.L., Lin C.J.: Radius margin bounds for support vector machines with the RBF kernel. Neural Comput. 15, 2643–2681 (2003)

    Article  Google Scholar 

  15. Colson B., Marcotte P., Savard G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)

    Article  Google Scholar 

  16. Cottle, R.W., Pang, J.S., Stone, R.E.: The linear complementarity problem. SIAM Classics in Applied Mathematics 60, Philadelphia (2009) [Originally published by Academic Press, Boston (1992)]

  17. Dempe S.: Foundations of Bilevel Programming. Kluwer, Dordrecht (2002)

    Google Scholar 

  18. Dempe, S., Dutta, J.: Is bilevel programming a special case of a mathematical program with complementarity constraints? Math. Program (2010) (online first)

  19. Facchinei F., Pang J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems: vols. I and II. Springer, New York (2003)

    Google Scholar 

  20. Floudas C.A., Pardalos P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms, vol. 455 of Lecture Notes in Computer Science. Springer, New York (1990)

    Book  Google Scholar 

  21. Floudas C.A., Pardalos P.M., Adjiman C., Esposito W.R., Gümüs Z.H., Harding S.T., Klepeis J.L., Meyer C.A., Schweiger C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33 of Nonconvex Optimization and its Applications. Kluwer, Dordrecht (1999)

    Google Scholar 

  22. Giannessi, F., Tomasin, E.: Nonconvex quadratic programs, linear complementarity problems, and integer linear programs. In: Conti, R., Ruberti, A. (eds.) Fifth Conference on Optimization Techniques (Rome 1973), Part I, vol. 3 of Lecture Notes in Computer Science, pp. 437–449. Springer, Berlin (1973)

  23. Grone B., Johnson C.R., Marques de Sa E., Wolkowicz H.: Positive definite completions of partial Hermitian matrices. Lin. Alg. Appl. 58, 109–124 (1984)

    Article  Google Scholar 

  24. Horn R.A., Johnson C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  25. Horst R., Pardalos P.M., Thoai N.V.: Introduction to Global Optimization, 2nd edn, Vol. 48 of Nonconvex Optimization and its Applications. Kluwer, Dordrecht (2000)

    Google Scholar 

  26. Hu, J.: On linear programs with linear complementarity constraints. PhD thesis, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, August (2009)

  27. Hu, J., Mitchell, J.E., Pang, J.S.: An LPCC approach to nonconvex quadratic programs. Technical report, Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180. Accepted for publication in Mathematical Programming. May (2008)

  28. Hu J., Mitchell J.E., Pang J.S., Bennett K.P., Kunapuli G.: On the global solution of linear programs with linear complementarity constraints. SIAM J. Optim. 19(1), 445–471 (2008)

    Article  Google Scholar 

  29. Iyengar G., Kang W.: Inverse conic programming with applications. Oper. Res. Lett. 33(3), 319–330 (2005)

    Article  Google Scholar 

  30. Keha, A.B.: A polyhedral study of nonconvex piecewise linear optimization. PhD thesis, Industrial Engineering, Georgia Institute of Technology, Atlanta, GA, August (2003)

  31. Keha A.B., de Farias I.R. Jr, Nemhauser G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32(1), 44–48 (2004)

    Article  Google Scholar 

  32. Keha A.B., de Farias I.R. Jr, Nemhauser G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54(5), 847–858 (2006)

    Article  Google Scholar 

  33. Kunapuli, G., Hu, J., Bennett, K.P., Pang, J.S.: Bilevel model selection for support vector machines. In: Data Mining and Mathematical Programming, vol 45 of CRM Proceedings and Lecture Notes, pp. 129–158. Centre de Recherches Mathématiques (2008)

  34. Kunapuli G., Hu J., Bennett K.P., Pang J.S.: Classification model selection via bilevel programming. Optim. Methods Softw. 23(4), 475–489 (2008)

    Article  Google Scholar 

  35. Krishnan K., Mitchell J.E.: A unifying framework for several cutting plane methods for semidefinite programming. Optim. Methods Softw. 21(1), 57–74 (2006)

    Article  Google Scholar 

  36. Lovász L., Schrijver A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)

    Article  Google Scholar 

  37. Luedtke, J.: Integer programming approaches for some non-convex and stochastic optimization problems. PhD thesis, Industrial and Systems Engineering, Georgia Institute of Technology (2007)

  38. Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  39. Pang J.-S., Fukushima M.: Complementarity constraint qualifications and simplified B-stationarity conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13(1–3), 111–136 (1999)

    Article  Google Scholar 

  40. Pang J.-S., Leyffer S.: On the global minimization of the Value-at-Risk. Optim. Methods Softw. 19(5), 611–631 (2004)

    Article  Google Scholar 

  41. Pardalos, P.M.: The linear complementarity problem. In: Gomez, S., Hennart, J.P. (eds.) Advances in Optimization and Numerical Analysis, pp. 39–49 (1994)

  42. Prékopa A.: Probabilistic programming. In: Ruszczynski, A., Shapiro, A. (eds) Stochastic Programming, chapter 5, Handbooks in Operations Research and Management Science, vol. 10., Elsevier, Amsterdam (2003)

    Google Scholar 

  43. Qualizza, A., Belotti, P., Margot, F.: Linear programming relaxations of quadratically constrained quadratic programs. IMA Volume Series Springer, accepted (2010)

  44. Rockafellar R.T., Uryasev S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)

    Google Scholar 

  45. Rockafellar R.T., Uryasev S.: Conditional value-at-risk for general loss distribution. J. Bank. Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  46. Saxena A., Bonami P., Lee J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124(1–2), 383–411 (2010)

    Article  Google Scholar 

  47. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Technical Report RC24695, IBM. Accepted for publication in Mathematical Programming August (2008)

  48. Scheel H., Scholtes S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)

    Article  Google Scholar 

  49. Scholtes, S.: Active set methods for inverse linear complementarity problems. Technical report, Judge Institute of Management Science, Cambridge University, Cambridge CB2 1AG, November (1999)

  50. Sherali H.D., Adams W.P.: A hierarchy of relaxation between the continuous and convex hull representations for zero-one programming problems. SIAM J. Dis. Math. 3, 411–430 (1990)

    Article  Google Scholar 

  51. Sherali H.D., Fraticelli B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Global Optim. 22, 233–261 (2002)

    Article  Google Scholar 

  52. Vandenbussche D., Nemhauser G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102(3), 559–575 (2005)

    Article  Google Scholar 

  53. Vandenbussche D., Nemhauser G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102(3), 531–557 (2005)

    Article  Google Scholar 

  54. Vapnik V.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    Google Scholar 

  55. Vielma J.P., Ahmed S., Nemhauser G.L.: Mixed-integer models for nonseparable piecewise linear optimization: Unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010)

    Article  Google Scholar 

  56. Vielma J.P., Keha A.B., Nemhauser G.L.: Nonconvex, lower semicontinuous piecewise linear optimization. Dis. Optim. 5(2), 467–488 (2008)

    Article  Google Scholar 

  57. Xiao X., Zhang L., Zhang J.: A smoothing Newton method for a type of inverse semi-definite quadratic programming problem. J. Comput. Appl. Math. 223(1), 485–498 (2009)

    Article  Google Scholar 

  58. Zhang J., Zhang L.: An augmented Lagrangian method for a type of inverse quadratic programming problems. Appl. Math. Optim. 61(1), 57–83 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shi Pang.

Additional information

It is our great pleasure to dedicate this work to Professor Richard W. Cottle on the occasion of his 75th birthday in 2009. Professor Cottle is the father of the linear complementarity problem (LCP) [16]. The linear program with linear complementarity constraints (LPCC) treated in this paper is a natural extension of the LCP; our hope is that the LPCC will one day become as fundamental as the LCP, thereby continuing Professor Cottle’s legacy, bringing it to new heights, and extending its breadth. The work of the author John E. Mitchell was supported by the National Science Foundation under grant DMS-0715446 and by the Air Force Office of Sponsored Research under grant FA9550-08-1-0081. The work of the author Jong-Shi Pang was supported by the Office of Naval Research under grant no. N00014-06-1-0014, by the Air Force Office of Sponsored Research under grant FA9550-08-1-0061, and by the National Science Foundation under grant CMMI-0969600.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Mitchell, J.E., Pang, JS. et al. On linear programs with linear complementarity constraints. J Glob Optim 53, 29–51 (2012). https://doi.org/10.1007/s10898-010-9644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9644-3

Keywords

Navigation