Journal of Global Optimization

, Volume 50, Issue 4, pp 645–655 | Cite as

On determining the cover of a simplex by spheres centered at its vertices

  • L. G. Casado
  • I. García
  • B. G. Tóth
  • E. M. T. Hendrix
Open Access


The aim of this work is to study the Simplex Cover (SC) problem, which is to determine whether a given simplex is covered by spheres centered at its vertices. We show that the SC problem is equivalent to a global optimization problem. We investigate its characteristics.


Covering Simplex Spheres 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Aurenhammer F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991). doi: 10.1145/116873.116880 CrossRefGoogle Scholar
  2. 2.
    Casado L.G., Hendrix E.M.T., García I.: Infeasibility spheres for finding robust solutions of blending problems with quadratic constraints. J. Glob. Optim. 39(2), 215–236 (2007). doi: 10.1007/s10898-006-9072-6 Google Scholar
  3. 3.
    Edelsbrunner, H.: The union of balls and its dual shape. In: SCG’93: Proceedings of the Ninth Annual Symposium on Computational Geometry, pp. 218–231, ACM, New York, USA (1993)Google Scholar
  4. 4.
    Gavrilova, M., Rokne, J.: An efficient algorithm for construction of the power diagram from the voronoi diagram in the plane. Int. J. Comput. Math. 61, 49–61 (1997) Google Scholar
  5. 5.
    Hendrix E.M.T., Casado L.G., García I.: The semi-continuous quadratic mixture design problem: description and branch-and-bound approach. Eur. J. Oper. Res. 191(3), 803–815 (2008). doi: 10.1016/j.ejor.2007.01.056 CrossRefGoogle Scholar
  6. 6.
    Sadri, B.: Surface and medial axis topology through distance flows induced by discrete samples. PhD thesis, University of Illinois, Urbana, Illinois (2006).

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • L. G. Casado
    • 1
  • I. García
    • 1
  • B. G. Tóth
    • 2
  • E. M. T. Hendrix
    • 3
  1. 1.Computer Architecture and Electronics DepartmentUniversity of AlmeríaAlmeriaSpain
  2. 2.Department of Differential EquationsBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Department of Computer ArchitectureUniversity of MálagaMálagaSpain

Personalised recommendations