Journal of Global Optimization

, Volume 46, Issue 2, pp 233–245 | Cite as

A new augmented Lagrangian approach to duality and exact penalization

  • C. S. Lalitha


In this paper, we introduce a new notion of augmenting function known as indicator augmenting function to establish a minmax type duality relation, existence of a path of solution converging to optimal value and a zero duality gap relation for a nonconvex primal problem and the corresponding Lagrangian dual problem. We also obtain necessary and sufficient conditions for an exact penalty representation in the framework of indicator augmented Lagrangian.


Augmented Lagrangian Augmenting function Nonconvex problem Duality 

Mathematics Subject Classification (2000)

90C26 90C46 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auslender A.: Penalty and barrier methods: a unified framework. SIAM J. Optim. 10, 211–230 (1999). doi: 10.1137/S1052623497324825 CrossRefGoogle Scholar
  2. 2.
    Huang X.X., Yang X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003). doi: 10.1287/moor.28.3.533.16395 CrossRefGoogle Scholar
  3. 3.
    Nedic A., Ozdaglar A.: A geometric framework for nonconvex optimization duality using augmented Lagrangian functions. J. Glob. Optim. 40, 545–573 (2008). doi: 10.1007/s10898-006-9122-0 CrossRefGoogle Scholar
  4. 4.
    Rubinov A.M., Huang X.X., Yang X.Q.: The zero duality gap property and lower semicontinuity of the perturbation function. Math. Oper. Res. 27, 775–791 (2002). doi: 10.1287/moor.27.4.775.295 CrossRefGoogle Scholar
  5. 5.
    Rubinov A.M.: Abstract Convexity and Global Optimization. Kluwer, Dordrecht (2000)Google Scholar
  6. 6.
    Rubinov A.M., Yang X.Q.: Lagrange-type Functions in Constrained Nonconvex Optimization. Kluwer, Massachusetts (2003)Google Scholar
  7. 7.
    Rockafellar R.T.: Augmented Lagrangian multiplier functions and duality in nonconvex programming. SIAM J. Contr. Optim. 12, 268–285 (1974). doi: 10.1137/0312021 CrossRefGoogle Scholar
  8. 8.
    Rockafellar R.T.: Lagrangian multipliers and optimality. SIAM Rev. 35, 183–238 (1993). doi: 10.1137/1035044 CrossRefGoogle Scholar
  9. 9.
    Rockafellar R.T., Wets R.J.-B.: Variational Analysis. Springer, Berlin (1998)CrossRefGoogle Scholar
  10. 10.
    Yang X.Q., Huang X.X.: A nonlinear Lagrangian approach to constrained optimization problems. SIAM J. Optim. 11, 1119–1144 (2001). doi: 10.1137/S1052623400371806 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of Mathematics, Rajdhani CollegeUniversity of DelhiNew DelhiIndia

Personalised recommendations