Advertisement

Journal of Global Optimization

, Volume 45, Issue 2, pp 309–318 | Cite as

Solution semicontinuity of parametric generalized vector equilibrium problems

  • C. R. Chen
  • S. J. Li
  • K. L. Teo
Article

Abstract

In this paper, the lower semicontinuity and continuity of the solution mapping to a parametric generalized vector equilibrium problem involving set-valued mappings are established by using a new proof method which is different from the ones used in the literature.

Keywords

Lower semicontinuity Continuity Solution mappings Parametric generalized vector equilibrium problems Scalarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anh L.Q., Khanh P.Q.: Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004)CrossRefGoogle Scholar
  2. 2.
    Anh L.Q., Khanh P.Q.: On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 135, 271–284 (2007)CrossRefGoogle Scholar
  3. 3.
    Aubin J.P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York (1984)Google Scholar
  4. 4.
    Berge C.: Topological Spaces. Oliver and Boyd, London (1963)Google Scholar
  5. 5.
    Chen C.R., Li S.J.: Semicontinuity of the solution set map to a set-valued weak vector variational inequality. J. Ind. Manag. Optim. 3, 519–528 (2007)Google Scholar
  6. 6.
    Chen, C.R., Li, S.J.: On the solution continuity of parametric generalized systems. (2008) (submitted)Google Scholar
  7. 7.
    Chen G.Y., Huang X.X., Yang X.Q.: Vector Optimization: Set-Valued and Variational Analysis. Springer, Berlin (2005)Google Scholar
  8. 8.
    Chen, C.R., Fang, Z.M., Li, S.J.: On the semicontinuity for a parametric generalized vector quasivariational inequality. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms. (2008) (to appear)Google Scholar
  9. 9.
    Cheng Y.H., Zhu D.L.: Global stability results for the weak vector variational inequality. J. Global Optim. 32, 543–550 (2005)CrossRefGoogle Scholar
  10. 10.
    Ferro F.: A minimax theorem for vector-valued functions. J. Optim. Theory Appl. 60, 19–31 (1989)CrossRefGoogle Scholar
  11. 11.
    Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  12. 12.
    Gong X.H.: Continuity of the solution set to parametric weak vector equilibrium problems. J. Optim. Theory Appl. 139, 35–46 (2008)CrossRefGoogle Scholar
  13. 13.
    Gong X.H., Yao J.C.: Lower semicontinuity of the set of efficient solutions for generalized systems. J. Optim. Theory Appl. 138, 197–205 (2008)CrossRefGoogle Scholar
  14. 14.
    Huang N.J., Li J., Thompson H.B.: Stability for parametric implicit vector equilibrium problems. Math. Comput. Model. 43, 1267–1274 (2006)CrossRefGoogle Scholar
  15. 15.
    Jahn J.: Vector Optimization-Theory, Applications and Extensions. Springer, Berlin (2004)Google Scholar
  16. 16.
    Khanh P.Q., Luu L.M.: Upper semicontinuity of the solution set to parametric vector quasivariational inequalities. J. Global Optim. 32, 569–580 (2005)CrossRefGoogle Scholar
  17. 17.
    Kimura K., Yao J.C.: Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems. J. Global Optim. 41, 187–202 (2008)CrossRefGoogle Scholar
  18. 18.
    Kimura K., Yao J.C.: Semicontinuity of solution mappings of parametric generalized vector equilibrium problems. J. Optim. Theory Appl. 138, 429–443 (2008)CrossRefGoogle Scholar
  19. 19.
    Li S.J., Chen G.Y., Teo K.L.: On the stability of generalized vector quasivariational inequality problems. J. Optim. Theory Appl. 113, 283–295 (2002)CrossRefGoogle Scholar
  20. 20.
    Li, S.J., Chen, C.R.: Stability of weak vector variational inequality. Nonlinear Anal. doi: 10.1016/j.na.2008.02.032 (2008)
  21. 21.
    Li S.J., Fang Z.M.: On the stability of a dual weak vector variational inequality problem. J. Ind. Manag. Optim. 4, 155–165 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.College of Mathematics and ScienceChongqing UniversityChongqingChina
  2. 2.Department of Mathematics and StatisticsCurtin University of TechnologyPerthAustralia

Personalised recommendations