Journal of Global Optimization

, Volume 40, Issue 1–3, pp 197–208 | Cite as

Constrained extremum problems with infinite dimensional image. Selection and saddle point

  • K. Madani
  • G. Mastroeni
  • A. Moldovan


The paper deals with Image Space Analysis for constrained extremum problems having infinite dimensional image. It is shown that the introduction of selection for point- to-set maps and of quasi-multipliers allows one to establish sufficient optimality conditions for problems, where the classic ones fail.


Optimality conditions Saddle point Multipliers Quasi-multipliers Image Space Analysis 

Mathematics Subject Classification (2000)

90C 65K 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (1967). Nonlinear Programming. North-Holland, Amsterdam Google Scholar
  2. 2.
    Giannessi, F.: Constrained Optimization and Image Space Analysis, vol. 1. Separation of sets and Optimality Conditions. Springer (2005)Google Scholar
  3. 3.
    Giannessi, F., Mastroeni, G., Uderzo, A.: A multifunction approach to extremum problems having infinite dimensional image: necessary conditions for unilateral constraints, pp. 39–51. Cybernetics and System Analysis, No. 3, Plenum (2002)Google Scholar
  4. 4.
    Hestenes M.R. (1966). Calculus of Variations and Optimal Control Theory. Wiley, New York Google Scholar
  5. 5.
    Madani, K., Mastroeni, G., Moldovan, A.: Constrained Extremum Problems with Infinite dimensional Image. Selection and Necessary Conditions. J. Optimiz. Theory App. 1 (135) N.1. (2007)Google Scholar
  6. 6.
    Pars L.A. (1962). An Introduction to the Calculus of Variations. Heinemann, London Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OranOranAlgeria
  2. 2.Department of MathematicsUniversity of PisaPisaItaly

Personalised recommendations