Mathematical Programming with System of Equilibrium Constraints



In this paper, we study the mathematical program with system of equilibrium constraints. This problem contains bilevel program with system of equilibrium constraints, semi-infinite program with system of equilibrium constraints, mathematical program with Nash equilibrium constraints, mathematical program with system of mixed variational like inequalities constraints. We establish the existence theorems of mathematical program with system of equilibrium constraints under various assumptions.


Mathematical program (resp. bilevel problem, semi-infinite problem) with system of equilibrium constraints Concave (resp. convex) multivalued map Upper (resp. lower) semicontinuous multivalued map 


  1. Aubin J.P., Cellina A. (1994) Differential Inclusion. Springer Verlag, Berlin, GermanyGoogle Scholar
  2. Bard J.F. (1998) Pratical Bilevel Optimization, Algorithms and Applications, Nonconvex Optimization and its Applications. Kluwer Academic Publishers, DordrechltGoogle Scholar
  3. Birbil S., Bouza G., Frenk J.B.G., Still G. (2006) Equilibrium constrained optimization problems. Eur. J. Operation Res. 169, 1108–1127CrossRefGoogle Scholar
  4. Fan K. (1961) A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310CrossRefGoogle Scholar
  5. Fan K. (1952) Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U.S.A. 38, 121–126CrossRefGoogle Scholar
  6. Himmelberg C.J. (1972) Fixed point of compact multifunctions. J. Math. Anal. Appl. 38, 205–207CrossRefGoogle Scholar
  7. Lin L.J., Ansari Q.H. (2004) Collective fixed points and maximal elements with applications to abstract economies. J. Math. Anal. Appl. 296, 455–472CrossRefGoogle Scholar
  8. Lin L.J., Still G. (2006) Mathematical programs with equilibrium constraints: the existence of feasible points. Optimization 55(3): 205–219CrossRefGoogle Scholar
  9. Luo Z.Q., Pang J.S., Ralph D. (1997) Mathematical Program with Equilibrium Constraint. Cambridge University Press, CambridgeGoogle Scholar
  10. Stein O. (2003) Bilevel Strategies in Semi-infinite Programming. Kluwer Academy publishers, DordrechtGoogle Scholar
  11. Stein O., Still G. (2002) On generalized semi-infinite optimization and bilevel optimization. Eur. J. Operation Res. 142(3): 442–462CrossRefGoogle Scholar
  12. Tan N.X. (1985) Quasi-variational inequalities in topological linear locally convex Hausdorff spaces. Math. Nachrichten 122, 231–245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of MathematicsNational Changhua University of EducationChanghuaTaiwan

Personalised recommendations