Advertisement

Journal of Global Optimization

, Volume 36, Issue 3, pp 351–363 | Cite as

An LQP Method for Pseudomonotone Variational Inequalities

  • Abdellah Bnouhachem
Original Article

Abstract

In this paper, we proposed a modified Logarithmic-Quadratic Proximal (LQP) method [Auslender et al.: Comput. Optim. Appl. 12, 31–40 (1999)] for solving variational inequalities problems. We solved the problem approximately, with constructive accuracy criterion. We show that the method is globally convergence under that the operator is pseudomonotone which is weaker than the monotonicity and the solution set is nonempty. Some preliminary computational results are given.

Keywords

Variational inequality Pseudomonotone operator Logarithmic-quadratic proximal method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auslender A., Teboulle M., Ben-Tiba S. (1999) A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12, 31–40CrossRefGoogle Scholar
  2. Auslender A., Teboulle M., Ben-Tiba S. (1999) Interior proximal and multiplier methods based on second order homogenous kernels. Math. Opererat. Res. 24, 646–668Google Scholar
  3. Burachik R.S., Iusem A.N. (1998) A generalized proximal point algorithm for the variational inequality problem in a hilbert space. SIAM J. Optim. 8, 197–216CrossRefGoogle Scholar
  4. Eckestein J. (1998) Approximate iterations in bregman-function-based proximal algorithms. Math. Program. 83, 113–123Google Scholar
  5. Ferris M.C., Pang J.S. (1997) Engineering and economic applications of complementariry problems. SIAM Rev. 39, 669–713CrossRefGoogle Scholar
  6. Glowinski R. (1984) Numerical Methods for Nonlinear Variational Inequality Problems. Springer Verlag, New York NYGoogle Scholar
  7. Guler O. (1991) On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419CrossRefGoogle Scholar
  8. Harker P.T., Pang J.S. (1990) Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220CrossRefGoogle Scholar
  9. He B.S. (1999) Inexact implicit methods for monotone general variational inequalities. Math. Program. 86, 199–217CrossRefGoogle Scholar
  10. Khobotov E.N. (1987) Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Mathemat. Phys. 27, 120–127CrossRefGoogle Scholar
  11. Korpelevich G.M. (1976) The extragradient method for finding saddle points and other problems. Ekonomika i Matematchskie Metody 12, 747–756Google Scholar
  12. Moré J.J. (1996) Global methods for nonlinear complementarity problems. Math. Operations Res. 21, 589–614CrossRefGoogle Scholar
  13. Rockafellar R.T. (1976) Monotone operators and the proximal point algorithm. SIAM J. Control Optimi. 14, 877–898CrossRefGoogle Scholar
  14. Solodov M.V., Svaiter B.F. (2000) Error bounds for proximal point subproblems and associated inexact proximal point algorithms. Math. Program. Ser. B 88, 371–389CrossRefGoogle Scholar
  15. Teboulle M. (1997) Convergence of proximal-like algorithms. SIAM J. Optim. 7, 1069–1083CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of Management Science and EngineeringNanjing UniversityNanjingP. R. China

Personalised recommendations