Journal of Global Optimization

, Volume 35, Issue 3, pp 405–421 | Cite as

On a Polynomial Fractional Formulation for Independence Number of a Graph



In this paper we characterize the local maxima of a continuous global optimization formulation for finding the independence number of a graph. Classical Karush-Kuhn-Tucker conditions and simple combinatorial arguments are found sufficient to deduce several interesting properties of the local and global maxima. These properties can be utilized in developing new approaches to the maximum independent set problem.


Global optimization Maximum independent set Polynomial fractional programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abello, J., Butenko, S., Pardalos, P., Resende, M. 2001Finding independent sets in a graph using continuous multivariable polynomial formulationsJournal of Global Optimization21111137CrossRefGoogle Scholar
  2. Balasundaram, B., Butenko, S. 2005Constructing test functions for global optimization using continuous formulations of graph problemsOptimization Methods and Software20439452CrossRefGoogle Scholar
  3. Bomze, I.M. 1997Evolution towards the maximum cliqueJournal of Global Optimization10143164CrossRefGoogle Scholar
  4. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M. 1999The maximum clique problemDu, D.-Z.Pardalos, P.M. eds. Handbook of Combinatorial OptimizationKluwer Academic PublishersDordrecht, The Netherlands174Google Scholar
  5. Burer, S., Monteiro, R.D.C., Zhang, Y. 2001Rank-two relaxation heuristics for MAX-CUT and other binary quadratic programsSIAM Journal on Optimization12503521CrossRefGoogle Scholar
  6. Burer, S., Monteiro, R.D.C., Zhang, Y. 2002Maximum stable set formulations and heuristics based on continuous optimizationMathematical Programming94137166CrossRefGoogle Scholar
  7. Busygin, S., Butenko, S., Pardalos, P.M. 2002A heuristic for the maximum independent set problem based on optimization of a quadratic over a sphereJournal of Combinatorial Optimization6287297CrossRefGoogle Scholar
  8. Caro, Y., Tuza, Z. 1991Improved lower bounds on k-independenceJournal of Graph Theory1599107Google Scholar
  9. Angelis, P.L., Bomze, I.M., Toraldo, G. 2004Ellipsoidal approach to box-constrained quadratic problemsJournal of Global Optimization28115CrossRefGoogle Scholar
  10. DIMACS (1995), Cliques, coloring, and satisfiability: second DIMACS implementation challenge, Accessed August 2004.Google Scholar
  11. Garey, M.R., Johnson, D.S. 1979Computers and Intractability: A Guide to the Theory of NP-completenessW.H. Freeman and CompanyNew YorkGoogle Scholar
  12. Gibbons, L.E., Hearn, D.W. and Pardalos, P.M. (1996), A continuous based heuristic for the maximum clique problem, In: Johnson, D.S. and Trick, M.A. (eds.), Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Vol. 26 of DIMACS Series, American Mathematical Society, Providence, RI, pp. 103–124.Google Scholar
  13. Gibbons, L.E., Hearn, D.W., Pardalos, P.M., Ramana, M.V. 1997Continuous characterizations of the maximum clique problemMathematics of Operations Research22754768CrossRefGoogle Scholar
  14. Goemans, M.X., Williamson, D.P. 1995Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJournal of ACM4211151145CrossRefGoogle Scholar
  15. Harant, J. 1998A lower bound on the independence number of a graphDiscrete Mathematics188239243CrossRefGoogle Scholar
  16. Harant, J. 2000Some news about the independence number of a graphDiscussiones Mathematicae Graph Theory207179Google Scholar
  17. Harant, J., Pruchnewski, A., Voigt, M. 1999On dominating sets and independent sets of graphsCombinatorics, Probability and Computing8547553CrossRefGoogle Scholar
  18. MathWorks (2004), The mathworks Matlab ® optimization toolbox – fmincon, Accessed August 2004.Google Scholar
  19. Motzkin, T.S., Straus, E.G. 1965Maxima for graphs and a new proof of a theorem of TuránCanadian Journal of Mathematics17533540Google Scholar
  20. Pardalos, P. 1996Continuous approaches to discrete optimization problemsPillo, G.D.Giannessi, F. eds. Nonlinear Optimization and ApplicationsPlenum Publishing CorporationNew York313328Google Scholar
  21. Tuy, H., Thach, P.T., Konno, H. 2004Optimization of polynomial fractional functionsJournal of Global Optimization291944CrossRefGoogle Scholar
  22. Wei, V.K. (1981), A lower bound on the stability number of a simple graph, Technical Report TM 81-11217-9, Bell Laboratories, Murray Hill, NJ.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Industrial and Systems EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations