Journal of Global Optimization

, Volume 30, Issue 2–3, pp 319–333 | Cite as

A Geometric Representation of the Morse Fan

  • J. Grzybowski
  • D. Pallaschk
  • R. Urbański
Combinatorial convexity Nonsmooth Morse theory Nonsmooth optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrachev, A.A, Pallaschke, D. and Scholtes, S. (1997), On Morse theory for piecewise smooth functions, Journal of Dynamical and Control Systems, 3, 449-469.Google Scholar
  2. 2.
    Bartels, S.G., Kuntz, L. and Scholtes, S. (1995), Continuous selections of linear functions and nonsmooth critical point theory, Nonlinear Analysis. Theory, Methods & Application, 24, 385-407.CrossRefGoogle Scholar
  3. 3.
    Demyanov, V.F. and Rubinov, A.M. (1986), Quasidifferential calculus, Optimization Software Inc., Publications Division, New York.Google Scholar
  4. 4.
    Ewald, G. (1996), Combinatorial Convexity and Algebraic Geometry. Springer, Berlin, Heidelberg, New York.Google Scholar
  5. 5.
    Grzybowski, J., Pallaschke, D. and Urbański, R. (2000), Minimal pairs representing selections of four linear functions in ℝ3. Journal of Convex Analysis 7, 445-452.Google Scholar
  6. 6.
    Jongen, H. Th., Jonker, P. and Twilt, F. (2000), Nonlinear Optimization inn I. Morse Theory, Chebyshev Approximation, Transversality, Flows, Parametric Aspects, of Nonconvex Optimization and its Applications Vol. 47. Kluwer Academic Publishers, Dordrecht.Google Scholar
  7. 7.
    Jongen, H. Th. and Pallaschke, D. (1988), On linearization and continuous selections of functions. Optimization 19, 343-353.CrossRefGoogle Scholar
  8. 8.
    Melzer, D. (1986), On the expressibility of piecewise-linear continuous functions as the difference of two piecewise-linear convex functions. Mathematical Programming Study 29, 118-134.Google Scholar
  9. 9.
    Pallaschke, D. and Rolewicz, S. (1997), Foundations of Mathematical Optimization, Mathematics and its Applications, Kluwer Academic Publishers Dordrecht.Google Scholar
  10. 10.
    Pallaschke, D. and Rolewicz, S. (1999), Sublinear functions which generate the group of normal forms of piecewise smooth Morse functions. Optimization 45, 223-236.CrossRefGoogle Scholar
  11. 11.
    Pallaschke, D. and Urbański, R. (2000), Minimal pairs of compact convex sets, with application to quasidifferential calculus. In: Demyanov, V.F. and Rubinov, A.M. (Eds. ), Quasidifferentiability and Related Topics, of Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht Vol. 43 173-213.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Grzybowski
    • 1
  • D. Pallaschk
    • 2
  • R. Urbański
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland
  2. 2.Institute for Statistics and Mathematical EconomicsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations