Journal of Global Optimization

, Volume 33, Issue 4, pp 563–578 | Cite as

The Kth-Best Approach for Linear Bilevel Multi-follower Programming

  • Chenggen Shi
  • Guangquan Zhang
  • Jie Lu


The majority of research on bilevel programming has centered on the linear version of the problem in which only one leader and one follower are involved. This paper addresses linear bilevel multi-follower programming (BLMFP) problems in which there is no sharing information among followers. It explores the theoretical properties of linear BLMFP, extends the Kth-best approach for solving linear BLMFP problems and gives a computational test for this approach.


bilevel decision-making decision-making optimization Kth-best approach linear bilevel programming multi-follower programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiyoshi, E., Shimizu, K. 1981Hierarchical decentralized systems and its new solution by a barrier methodIEEE Transactions on Systems, Man, and Cybernetics11444449Google Scholar
  2. Bard, J. 1984An investigation of the linear three level programming problemsIEEE Transactions on Systems, Man, and Cybernetics14711717Google Scholar
  3. Bard, J. 1998Practical Bilevel Optimization: Algorithms and ApplicationsKluwer Academic PublishersUSAGoogle Scholar
  4. Bard, J., Falk, J. 1982An explicit solution to the multilevel programming problemComputers and Operations Research977100Google Scholar
  5. Bialas, W. and Karwan, M. (1978), Multilevel linear programming, State University of New York at BuffaloGoogle Scholar
  6. Bialas, W., Karwan, M. 1984Twolevel linear programmingManagement Science3010041020CrossRefGoogle Scholar
  7. Bialas, W., Karwan, M. et al. (1980), A parametric complementary pivot approach for twolevel linear programming, State University of New York at BuffaloGoogle Scholar
  8. Candler, W., Townsley, R. 1982A linear twolevel programming problemComputers and Operations Research95976CrossRefGoogle Scholar
  9. Hansen, P., Jaumard, B.,  et al. 1992New branchandbound rules for linear bilevel programmingSIAM Journal on Scientific and Statistical Computing1311941217Google Scholar
  10. Lu, J., Shi, C. and Zhang, G. (2005), On bilevel multi-follower decision-making: general framework and solutions, Information Sciences (in press), available online at www.sciencedirect.comGoogle Scholar
  11. Savard, G. (1989), Contributions á la programmation mathématique á deux niveaux, Université de Montréal, École PolytechniqueGoogle Scholar
  12. Shi, C., Lu, J., Zhang, G. 2005An extended Kuhn-Tucker approach for linear bilevel programmingApplied Mathematics and Computation1625163CrossRefGoogle Scholar
  13. Shi, C., Zhang, G., Lu, J. 2005aOn the definition of linear bilevel programming solutionApplied Mathematics and Computation160169176CrossRefGoogle Scholar
  14. Shi, C., Zhang, G., Lu, J. 2005An extended Kth best approach for linear bilevel programmingApplied Mathematics and Computation164843855CrossRefGoogle Scholar
  15. Stackelberg, H. V. (1952), The Theory of the Market Economy, Oxford University PressGoogle Scholar
  16. White, D., Anandalingam, G. 1993A penalty function approach for solving bilevel linear programsJournal of Global Optimization3397419CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Faculty of Information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations