Abstract
In this study, a novel and simple fluorescent carbon quantum dots (CQDs) based nano-sensor for colchicine determination has been prepared. The nitrogen doped CQDs probe was prepared using uric acid as a carbon/nitrogen source via a one-step pyrolysis. The sensor is based on inner filter effect (IFE) where colchicine acts as a powerful absorber that affects the excitation of the fluorescer (CQDs). This overlap results in a quantitative attenuation of the fluorescence of CQDs with increasing colchicine concentration in the range of 2–25 μM. The developed sensor has the advantages of simplicity, less time-consuming, convenience and satisfactory selectivity for colchicine determination in pharmaceutical dosage forms.
This is a preview of subscription content, access via your institution.









References
- 1.
Leung YY, Yao Hui LL, Kraus VB (2015) Colchicine--update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 45(3):341–350. https://doi.org/10.1016/j.semarthrit.2015.06.013
- 2.
Cabău G, Crișan TO, Klück V, Popp RA, Joosten LAB (2020) Urate-induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol Rev 294(1):92–105. https://doi.org/10.1111/imr.12833
- 3.
Dasgeb B, Kornreich D, McGuinn K, Okon L, Brownell I, Sackett DL (2018) Colchicine: an ancient drug with novel applications. Br J Dermatol 178(2):350–356. https://doi.org/10.1111/bjd.15896
- 4.
Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C, López-Sendón J, Ostadal P, Koenig W, Angoulvant D, Grégoire JC, Lavoie M-A, Dubé M-P, Rhainds D, Provencher M, Blondeau L, Orfanos A, L’Allier PL, Guertin M-C, Roubille F (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381(26):2497–2505. https://doi.org/10.1056/NEJMoa1912388
- 5.
Gracheva IA, Shchegravina ES, Schmalz H-G, Beletskaya IP, Fedorov AY (2020) Colchicine alkaloids and synthetic analogues: current progress and perspectives. J Med Chem 63(19):10618–10651. https://doi.org/10.1021/acs.jmedchem.0c00222
- 6.
Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, Pollak U, Koren G, Bentur Y (2010) Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol 48(5):407–414. https://doi.org/10.3109/15563650.2010.495348
- 7.
Mohamed A-MI, Omar MA, Derayea SM, Hammad MA, Mohamed AA (2018) Validated thin-layer chromatographic method for alternative and simultaneous determination of two anti-gout agents in their fixed dose combinations. Open Chem 16(1):496–510. https://doi.org/10.1515/chem-2018-0050
- 8.
Bodoki E, Oprean R, Vlase L, Tamas M, Sandulescu R (2005) Fast determination of colchicine by TLC-densitometry from pharmaceuticals and vegetal extracts. J Pharm Biomed Anal 37(5):971–977. https://doi.org/10.1016/j.jpba.2004.10.006
- 9.
Fahim M, Singh M, Kamal YT, Mukhtar HM, Ahmad S (2015) A high performance thin layer chromatographic method for the estimation of colchicine in different formulations. J Pharm Bioallied Sci 7(4):260–263. https://doi.org/10.4103/0975-7406.168021
- 10.
Hadad GM, Badr JM, El-Nahriry K, Hassanean HA (2012) Validated HPLC and HPTLC methods for simultaneous determination of colchicine and khellin in pharmaceutical formulations. J Chromatogr Sci 51(3):258–265. https://doi.org/10.1093/chromsci/bms135
- 11.
Mohammed S, Abd El SA, Mohammed IA (2019) HPLC, densitometric and spectrophotometric methods for the simultaneous determination of colchicine and probenecid in their binary mixture. Asian J Appl Chem Res 2(2):1–12. https://doi.org/10.9734/ajacr/2018/v2i229673
- 12.
Çankaya N, Bulduk İ, Çolak AM (2019) Extraction, development and validation of HPLC-UV method for rapid and sensitive determination of colchicine from Colchicum autumnale L. Bulbs. Saudi J Biol Sci 26(2):345–351. https://doi.org/10.1016/j.sjbs.2018.10.003
- 13.
Ibrahim MA, Yusrida D, AKK N, Reem Abou A, Gabriel Onn Kit L (2017) A simple (HPLC-UV) method for the quantification of colchicine in bulk and ethosomal gel nano-formulation and its validation. Int J Pharm Pharm Sci 9(7):72–78. https://doi.org/10.22159/ijpps.2017v9i7.18336
- 14.
Rica CI, Naessens T, Pieters L, Apers S (2017) An HPLC method for the quantification of colchicine and colchicine derivatives in gloriosa superba seeds. Nat prod Commun 12(8):1215–1221. https://doi.org/10.1177/1934578x1701200817
- 15.
Abdel Razeq SA, Khalil IA, Mohammed SA (2020) Stability-indicating chromatographic and UV spectrophotometric methods for determination of colchicine. J Iran Chem Soc 17(9):2415–2427. https://doi.org/10.1007/s13738-020-01937-8
- 16.
Fabresse N, Allard J, Sardaby M, Thompson A, Clutton RE, Eddleston M, Alvarez J-C (2017) LC–MS/MS quantification of free and fab-bound colchicine in plasma, urine and organs following colchicine administration and colchicine-specific fab fragments treatment in Göttingen minipigs. J Chromatogr B 1060:400–406. https://doi.org/10.1016/j.jchromb.2017.06.034
- 17.
Jiang Y, Wang J, Wang Y, Li H, Fawcett JP, Gu J (2007) Rapid and sensitive liquid chromatography-tandem mass spectrometry method for the quantitation of colchicine in human plasma. J Chromatogr B 850(1–2):564–568. https://doi.org/10.1016/j.jchromb.2006.12.022
- 18.
Gul H, Demirkaya E, Eser B, Kapucu H, Tuncbilek V, Simsek D (2015) Colchicine measurement using LC-MS/MS with ESI in serum with liquid liquid extraction. Pediatr Rheumatol 13(S1):118. https://doi.org/10.1186/1546-0096-13-S1-P118
- 19.
Wang F, Zhou J, Liu Y, Wu S, Song G, Ye B (2011) Electrochemical oxidation behavior of colchicine on a graphene oxide-Nafion composite film modified glassy carbon electrode. Analyst 136(19):3943–3949. https://doi.org/10.1039/C1AN15372B
- 20.
Zhang H (2006) Electrochemistry and voltammetric determination of colchicine using an acetylene black-dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode. Bioelectrochemistry 68(2):197–201. https://doi.org/10.1016/j.bioelechem.2005.07.001
- 21.
Afzali M, Mostafavi A, Shamspur T (2020) Sensitive detection of colchicine at a glassy carbon electrode modified with magnetic ionic liquid/CuO nanoparticles/carbon nanofibers in pharmaceutical and plasma samples. J Iran Chem Soc 17(7):1753–1764. https://doi.org/10.1007/s13738-020-01894-2
- 22.
Suad KO, Abdolla NSY, Boujwod FF, Yaman MMR (2019) Spectrophotometric method for the determination of colchicine in pure and pharmaceutical forms (a kinetic study). J Pure Appl Sci 18(4):313–319
- 23.
Liu YM, Guizhi L (2000) Determination of colchicine in tablet by fluorimetry. Chin J Anal Chem 38(3):331–332
- 24.
Ngororabanga JMV, Du Plessis J, Mama N (2017) Fluorescent polymer incorporating triazolyl coumarin units for cu(2+) detection via planarization of Ict-based fluorophore. Sensors 17(9):1–13. https://doi.org/10.3390/s17091980
- 25.
Liu Y, Huang H, Cao W, Mao B, Liu Y, Kang Z (2020) Advances in carbon dots: from the perspective of traditional quantum dots. Mater Chem Front 4(6):1586–1613. https://doi.org/10.1039/D0QM00090F
- 26.
Molaei MJ (2020) Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal Methods 12(10):1266–1287. https://doi.org/10.1039/C9AY02696G
- 27.
Magdy G, Abdel Hakiem AF, Belal F, Abdel-Megied AM (2021) Green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots as new fluorescent nanosensors for determination of salinomycin and maduramicin in food samples. Food Chem 343:128539. https://doi.org/10.1016/j.foodchem.2020.128539
- 28.
Vázquez-González M, Carrillo-Carrion C (2014) Analytical strategies based on quantum dots for heavy metal ions detection. J Biomed Opt 19(10):101503. https://doi.org/10.1117/1.JBO.19.10.101503
- 29.
Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9
- 30.
Pan M, Xie X, Liu K, Yang J, Hong L, Wang S (2020) Fluorescent carbon quantum dots-synthesis, functionalization and sensing application in food analysis. Nanomaterials 10(5):930–954. https://doi.org/10.3390/nano10050930
- 31.
Qin J, Zhang L, Yang R (2019) Powder carbonization to synthesize novel carbon dots derived from uric acid for the detection of Ag(I) and glutathione. Spectrochim Acta A 207:54–60. https://doi.org/10.1016/j.saa.2018.08.066
- 32.
Rurack K (2008) Fluorescence quantum yields: methods of determination and standards. In: Resch-Genger U (ed) Standardization and quality Assurance in Fluorescence Measurements, vol 5. Springer, Berlin, pp 101–145
- 33.
Li P, Hu Y (2018) “Turn-off” fluorescent sensor for pamidronate disodium and zoledronic acid based on newly synthesized carbon dots from black tea. J Anal Methods Chem 2018:3631249–3631247. https://doi.org/10.1155/2018/3631249
- 34.
Li H, Kong W, Liu J, Liu N, Huang H, Liu Y, Kang Z (2015) Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 91:66–75. https://doi.org/10.1016/j.carbon.2015.04.032
- 35.
Chen S, Yu Y-L, Wang J-H (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026
- 36.
ICH harmonised tripartite guidelines (2005) validation of analytical procedures: Text and methodology Q2(R1). http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 15 Nov 2020
- 37.
British Pharmacopoeia Commission (2016) British pharmacopoeia 2016: volume III. The Stationary Office (TSO), London
Availability of Data and Materials
Not applicable.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Affiliations
Contributions
Conceptualization: [Samah F. El-Malla], [Eman A. Elshenawy], [Sherin F. Hammad], [Fotouh R. Mansour]; Formal analysis [Samah F. El-Malla], [Eman A. Elshenawy], [Sherin F. Hammad], [Fotouh R. Mansour]; Investigation: [Eman A. Elshenawy]; Writing - original draft: [Eman A. Elshenawy]; Writing - review and editing: [Samah F. El-Malla], [Sherin F. Hammad], [Fotouh R. Mansour]. The author(s) read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of Interest
All authors declare that they have no conflict of interest.
Code Availability
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
El-Malla, S.F., Elshenawy, E.A., Hammad, S.F. et al. N-Doped Carbon Dots as a Fluorescent Nanosensor for Determination of Colchicine Based on Inner Filter Effect. J Fluoresc (2021). https://doi.org/10.1007/s10895-021-02698-0
Received:
Accepted:
Published:
Keywords
- Carbon quantum dots
- Uric acid
- Colchicine
- Inner filter effect
- Fluorescent nano-sensor
- Pharmaceutical analysis