N-Doped Carbon Dots as a Fluorescent Nanosensor for Determination of Colchicine Based on Inner Filter Effect

Abstract

In this study, a novel and simple fluorescent carbon quantum dots (CQDs) based nano-sensor for colchicine determination has been prepared. The nitrogen doped CQDs probe was prepared using uric acid as a carbon/nitrogen source via a one-step pyrolysis. The sensor is based on inner filter effect (IFE) where colchicine acts as a powerful absorber that affects the excitation of the fluorescer (CQDs). This overlap results in a quantitative attenuation of the fluorescence of CQDs with increasing colchicine concentration in the range of 2–25 μM. The developed sensor has the advantages of simplicity, less time-consuming, convenience and satisfactory selectivity for colchicine determination in pharmaceutical dosage forms.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Leung YY, Yao Hui LL, Kraus VB (2015) Colchicine--update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 45(3):341–350. https://doi.org/10.1016/j.semarthrit.2015.06.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Cabău G, Crișan TO, Klück V, Popp RA, Joosten LAB (2020) Urate-induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol Rev 294(1):92–105. https://doi.org/10.1111/imr.12833

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Dasgeb B, Kornreich D, McGuinn K, Okon L, Brownell I, Sackett DL (2018) Colchicine: an ancient drug with novel applications. Br J Dermatol 178(2):350–356. https://doi.org/10.1111/bjd.15896

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C, López-Sendón J, Ostadal P, Koenig W, Angoulvant D, Grégoire JC, Lavoie M-A, Dubé M-P, Rhainds D, Provencher M, Blondeau L, Orfanos A, L’Allier PL, Guertin M-C, Roubille F (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381(26):2497–2505. https://doi.org/10.1056/NEJMoa1912388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gracheva IA, Shchegravina ES, Schmalz H-G, Beletskaya IP, Fedorov AY (2020) Colchicine alkaloids and synthetic analogues: current progress and perspectives. J Med Chem 63(19):10618–10651. https://doi.org/10.1021/acs.jmedchem.0c00222

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, Pollak U, Koren G, Bentur Y (2010) Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol 48(5):407–414. https://doi.org/10.3109/15563650.2010.495348

    CAS  Article  Google Scholar 

  7. 7.

    Mohamed A-MI, Omar MA, Derayea SM, Hammad MA, Mohamed AA (2018) Validated thin-layer chromatographic method for alternative and simultaneous determination of two anti-gout agents in their fixed dose combinations. Open Chem 16(1):496–510. https://doi.org/10.1515/chem-2018-0050

    CAS  Article  Google Scholar 

  8. 8.

    Bodoki E, Oprean R, Vlase L, Tamas M, Sandulescu R (2005) Fast determination of colchicine by TLC-densitometry from pharmaceuticals and vegetal extracts. J Pharm Biomed Anal 37(5):971–977. https://doi.org/10.1016/j.jpba.2004.10.006

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Fahim M, Singh M, Kamal YT, Mukhtar HM, Ahmad S (2015) A high performance thin layer chromatographic method for the estimation of colchicine in different formulations. J Pharm Bioallied Sci 7(4):260–263. https://doi.org/10.4103/0975-7406.168021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hadad GM, Badr JM, El-Nahriry K, Hassanean HA (2012) Validated HPLC and HPTLC methods for simultaneous determination of colchicine and khellin in pharmaceutical formulations. J Chromatogr Sci 51(3):258–265. https://doi.org/10.1093/chromsci/bms135

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Mohammed S, Abd El SA, Mohammed IA (2019) HPLC, densitometric and spectrophotometric methods for the simultaneous determination of colchicine and probenecid in their binary mixture. Asian J Appl Chem Res 2(2):1–12. https://doi.org/10.9734/ajacr/2018/v2i229673

    Article  Google Scholar 

  12. 12.

    Çankaya N, Bulduk İ, Çolak AM (2019) Extraction, development and validation of HPLC-UV method for rapid and sensitive determination of colchicine from Colchicum autumnale L. Bulbs. Saudi J Biol Sci 26(2):345–351. https://doi.org/10.1016/j.sjbs.2018.10.003

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ibrahim MA, Yusrida D, AKK N, Reem Abou A, Gabriel Onn Kit L (2017) A simple (HPLC-UV) method for the quantification of colchicine in bulk and ethosomal gel nano-formulation and its validation. Int J Pharm Pharm Sci 9(7):72–78. https://doi.org/10.22159/ijpps.2017v9i7.18336

    CAS  Article  Google Scholar 

  14. 14.

    Rica CI, Naessens T, Pieters L, Apers S (2017) An HPLC method for the quantification of colchicine and colchicine derivatives in gloriosa superba seeds. Nat prod Commun 12(8):1215–1221. https://doi.org/10.1177/1934578x1701200817

    CAS  Article  Google Scholar 

  15. 15.

    Abdel Razeq SA, Khalil IA, Mohammed SA (2020) Stability-indicating chromatographic and UV spectrophotometric methods for determination of colchicine. J Iran Chem Soc 17(9):2415–2427. https://doi.org/10.1007/s13738-020-01937-8

    CAS  Article  Google Scholar 

  16. 16.

    Fabresse N, Allard J, Sardaby M, Thompson A, Clutton RE, Eddleston M, Alvarez J-C (2017) LC–MS/MS quantification of free and fab-bound colchicine in plasma, urine and organs following colchicine administration and colchicine-specific fab fragments treatment in Göttingen minipigs. J Chromatogr B 1060:400–406. https://doi.org/10.1016/j.jchromb.2017.06.034

    CAS  Article  Google Scholar 

  17. 17.

    Jiang Y, Wang J, Wang Y, Li H, Fawcett JP, Gu J (2007) Rapid and sensitive liquid chromatography-tandem mass spectrometry method for the quantitation of colchicine in human plasma. J Chromatogr B 850(1–2):564–568. https://doi.org/10.1016/j.jchromb.2006.12.022

    CAS  Article  Google Scholar 

  18. 18.

    Gul H, Demirkaya E, Eser B, Kapucu H, Tuncbilek V, Simsek D (2015) Colchicine measurement using LC-MS/MS with ESI in serum with liquid liquid extraction. Pediatr Rheumatol 13(S1):118. https://doi.org/10.1186/1546-0096-13-S1-P118

    Article  Google Scholar 

  19. 19.

    Wang F, Zhou J, Liu Y, Wu S, Song G, Ye B (2011) Electrochemical oxidation behavior of colchicine on a graphene oxide-Nafion composite film modified glassy carbon electrode. Analyst 136(19):3943–3949. https://doi.org/10.1039/C1AN15372B

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhang H (2006) Electrochemistry and voltammetric determination of colchicine using an acetylene black-dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode. Bioelectrochemistry 68(2):197–201. https://doi.org/10.1016/j.bioelechem.2005.07.001

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Afzali M, Mostafavi A, Shamspur T (2020) Sensitive detection of colchicine at a glassy carbon electrode modified with magnetic ionic liquid/CuO nanoparticles/carbon nanofibers in pharmaceutical and plasma samples. J Iran Chem Soc 17(7):1753–1764. https://doi.org/10.1007/s13738-020-01894-2

    CAS  Article  Google Scholar 

  22. 22.

    Suad KO, Abdolla NSY, Boujwod FF, Yaman MMR (2019) Spectrophotometric method for the determination of colchicine in pure and pharmaceutical forms (a kinetic study). J Pure Appl Sci 18(4):313–319

    Google Scholar 

  23. 23.

    Liu YM, Guizhi L (2000) Determination of colchicine in tablet by fluorimetry. Chin J Anal Chem 38(3):331–332

    Google Scholar 

  24. 24.

    Ngororabanga JMV, Du Plessis J, Mama N (2017) Fluorescent polymer incorporating triazolyl coumarin units for cu(2+) detection via planarization of Ict-based fluorophore. Sensors 17(9):1–13. https://doi.org/10.3390/s17091980

    CAS  Article  Google Scholar 

  25. 25.

    Liu Y, Huang H, Cao W, Mao B, Liu Y, Kang Z (2020) Advances in carbon dots: from the perspective of traditional quantum dots. Mater Chem Front 4(6):1586–1613. https://doi.org/10.1039/D0QM00090F

    CAS  Article  Google Scholar 

  26. 26.

    Molaei MJ (2020) Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal Methods 12(10):1266–1287. https://doi.org/10.1039/C9AY02696G

    CAS  Article  Google Scholar 

  27. 27.

    Magdy G, Abdel Hakiem AF, Belal F, Abdel-Megied AM (2021) Green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots as new fluorescent nanosensors for determination of salinomycin and maduramicin in food samples. Food Chem 343:128539. https://doi.org/10.1016/j.foodchem.2020.128539

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Vázquez-González M, Carrillo-Carrion C (2014) Analytical strategies based on quantum dots for heavy metal ions detection. J Biomed Opt 19(10):101503. https://doi.org/10.1117/1.JBO.19.10.101503

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    CAS  Article  Google Scholar 

  30. 30.

    Pan M, Xie X, Liu K, Yang J, Hong L, Wang S (2020) Fluorescent carbon quantum dots-synthesis, functionalization and sensing application in food analysis. Nanomaterials 10(5):930–954. https://doi.org/10.3390/nano10050930

    CAS  Article  PubMed Central  Google Scholar 

  31. 31.

    Qin J, Zhang L, Yang R (2019) Powder carbonization to synthesize novel carbon dots derived from uric acid for the detection of Ag(I) and glutathione. Spectrochim Acta A 207:54–60. https://doi.org/10.1016/j.saa.2018.08.066

    CAS  Article  Google Scholar 

  32. 32.

    Rurack K (2008) Fluorescence quantum yields: methods of determination and standards. In: Resch-Genger U (ed) Standardization and quality Assurance in Fluorescence Measurements, vol 5. Springer, Berlin, pp 101–145

    Google Scholar 

  33. 33.

    Li P, Hu Y (2018) “Turn-off” fluorescent sensor for pamidronate disodium and zoledronic acid based on newly synthesized carbon dots from black tea. J Anal Methods Chem 2018:3631249–3631247. https://doi.org/10.1155/2018/3631249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Li H, Kong W, Liu J, Liu N, Huang H, Liu Y, Kang Z (2015) Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 91:66–75. https://doi.org/10.1016/j.carbon.2015.04.032

    CAS  Article  Google Scholar 

  35. 35.

    Chen S, Yu Y-L, Wang J-H (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    ICH harmonised tripartite guidelines (2005) validation of analytical procedures: Text and methodology Q2(R1). http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 15 Nov 2020

  37. 37.

    British Pharmacopoeia Commission (2016) British pharmacopoeia 2016: volume III. The Stationary Office (TSO), London

Download references

Availability of Data and Materials

Not applicable.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

Conceptualization: [Samah F. El-Malla], [Eman A. Elshenawy], [Sherin F. Hammad], [Fotouh R. Mansour]; Formal analysis [Samah F. El-Malla], [Eman A. Elshenawy], [Sherin F. Hammad], [Fotouh R. Mansour]; Investigation: [Eman A. Elshenawy]; Writing - original draft: [Eman A. Elshenawy]; Writing - review and editing: [Samah F. El-Malla], [Sherin F. Hammad], [Fotouh R. Mansour]. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Eman A. Elshenawy.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Malla, S.F., Elshenawy, E.A., Hammad, S.F. et al. N-Doped Carbon Dots as a Fluorescent Nanosensor for Determination of Colchicine Based on Inner Filter Effect. J Fluoresc (2021). https://doi.org/10.1007/s10895-021-02698-0

Download citation

Keywords

  • Carbon quantum dots
  • Uric acid
  • Colchicine
  • Inner filter effect
  • Fluorescent nano-sensor
  • Pharmaceutical analysis