A Turn‐on Fluorescent Probe for the Discrimination of Cys/Hcy and GSH With Dual Emission Signals


In this paper, we successfully synthesized a simple and versatile fluorescent probe. This probe was not only easily prepared with a high yield, but also showed rapid selective and sensitive responses for Cys/Hcy and GSH. The probe can be used as a naked-eye detector for Cys/Hcy and GSH from other analytes. As a fluorescent sensor, it can be used to simultaneously detect and discriminate Cys/Hcy from GSH with two fluorescent emission signals without spectral crosstalk.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Data Availability

All the data are available.


  1. 1.

    Kand D, Kalle AM, TaluKdar P (2013) Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics. Org Biomol Chem 11(10):1691–1701. https://doi.org/10.1039/C2OB27192C

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Miki H, Funato Y (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem 3:255–261. https://doi.org/10.1093/jb/mvs006

    CAS  Article  Google Scholar 

  3. 3.

    Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radical Biol Med 28:1456–1462. https://doi.org/10.1016/s0891-5849(00)00252-5

    CAS  Article  Google Scholar 

  4. 4.

    Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(2):345–350. https://doi.org/10.1042/0300-5127:0290345

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Chen X, Zhou Y, Peng X, Yoon J (2010) Cheminform abstract: fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 41(42):0–0. https://doi.org/10.1002/chin.201042280

    Article  Google Scholar 

  6. 6.

    Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Kim JS, Sessler JL, Kim TW, Kang C, Kim JS (2012) A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33(3):945–953. https://doi.org/10.1016/j.biomaterials.2011.10.040

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Zheng C, Pu S, Liu G, Chen B, Dai Y (2013) A highly selective colorimetric sensor for cysteine and homocysteine based on a new photochromic diarylethene. Dyes Pigments 98(2):280–285. https://doi.org/10.1016/j.dyepig.2013.02.022

    CAS  Article  Google Scholar 

  8. 8.

    Shahrokhian S, Saeed (2001) Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73(24):5972–5978. https://doi.org/10.1021/ac010541m

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Long L, Lin W, Chen B, Gao W, Yuan L (2011) Construction of a FRET-based ratiometric fluorescent thiol probe. Chem Commun 47(3):893–895. https://doi.org/10.1039/c0cc03806g

    CAS  Article  Google Scholar 

  10. 10.

    Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, kayode SO, letcher KA, Lowry M, Schowalter CM, Lawrence CM, Fronczek FR, Warner IM, Strongin RM (2005) Detection of Homocysteine and Cysteine. J Am Chem Soc 127(45):15949–15958. https://doi.org/10.1021/ja054962n

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Shao N, Jin JY, Cheung SM, Yang RH, Chan WH, Mo T (2006) A Spiropyran-Based Ensemble for Visual Recognition and Quantification of Cysteine and Homocysteine at Physiological Levels. Angew Chem 118:5066–5070. https://doi.org/10.1002/ange.200600112

    Article  Google Scholar 

  12. 12.

    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, Wolf PA, D’Agostino RB, Wilson PWF (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483. https://doi.org/10.1016/S1062-1458(02)00690-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Li L, Rose P, Moore Annu PK (2011) Hydrogen Sulfide and Cell Signaling. Rev Pharmacol Toxicol 51:169–187. https://doi.org/10.1146/annurev-pharmtox-010510-100505

    CAS  Article  Google Scholar 

  14. 14.

    Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (2009) Neuroprotective effects of hydrogen sulfide on parkinson’s disease rat models. Aging Cell 9(2):135–146. https://doi.org/10.1111/j.1474-9726.2009.00543.x

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Lee HY, Choi YP, Kim S, Yoon T, Guo Z, Lee S, Swamy KMK, Kim K, Lee JY, Shin I, Yoon J (2014) Selective homocysteine turn-on fluorescent probes and their bioimaging applications. Chem Commun 50(53):6967–6969. https://doi.org/10.1039/c4cc00243a

    CAS  Article  Google Scholar 

  16. 16.

    Yang Y, Huo F, Yin C, Zheng A, Li Y, Liu B, Chao J, Nie Z, Li YL, Martínez Máñez R (2013) Thiol–chromene click chemistry: a coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications. Biosens Bioelctron 47:300–306. https://doi.org/10.1016/j.bios.2013.03.007

    CAS  Article  Google Scholar 

  17. 17.

    Yin J, KwonY, Kim D, Lee D, Yoon J (2014) Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J Am Chem 136(23):5351–5358. https://doi.org/10.1021/ja412628z

    CAS  Article  Google Scholar 

  18. 18.

    Yang Y, Huo FJ, Yin C, Chao J, Zhang Y (2015) An ‘off–on’ fluorescent probe for specially recognize on cys and its application in bioimaging. Dyes Pigments 114:105–109. https://doi.org/10.1016/j.dyepig.2014.11.004

    CAS  Article  Google Scholar 

  19. 19.

    Chen W, Zhao Y, Seefeldt T, Guan X (2008) Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J Pharm Biomed Anal 48: 1375–1380. https://doi.org/10.1016/j.jpba.2008.08.033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Inoue T, Kirchhoff JR (2000) Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal Chem 72(18):5755–5760. https://doi.org/10.1021/ac0302399

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Zinellu A, Sotgia S, Scanu B, Usai MF, Fois AG, Spada V, Deledda A, Deiana L, Pirina P, Carru C (2009) Simultaneous detection of n-acetyl-l-cysteine and physiological low molecular mass thiols in plasma by capillary electrophoresis. Amino Acids 37:395–400. https://doi.org/10.1007/s00726-008-0167-x

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Burford N, Eelman MD, Mahony DE, Morash M (2003) Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents. Chem Commun 1:146–147. https://doi.org/10.1039/B210570E

    Article  Google Scholar 

  23. 23.

    Rafii M, Elango R, Courtney-Martin G, House JD, Fisher L, Pencharz PB (2007) High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography–electrospray tandem mass spectrometry. Anal Biochem 371(1):71–81. https://doi.org/10.1016/j.ab.2007.07.026

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Amarnath K, Amarnath V, Amarnath K, Valentine HL, Valentine WM (2003) A specific hplc-uv method for the determination of cysteine and related aminothiols in biological samples. Talanta 60(6):1229–1238. https://doi.org/10.1016/S0039-9140(03)00232-7

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Wen M, Liu H, Zhang F, Zhu Y, Liu D, Tian Y, Wu Q (2009) Amorphous FeNiPt nanoparticles with tunable length for electrocatalysis and electrochemical determination of thiols. Chem Commun 4530–4532. https://doi.org/10.1039/b907379e

  26. 26.

    Yin C, Huo F, Zhang J, Yang Y, Lv H, Li S, Martínez-Máñez R (2013) Thiol-addition reactions and their applications inthiol recognition. Chem Soc Rev 42:6032–6059. https://doi.org/10.1039/c3cs60055f

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Jia H, Pu S, Fan C, Liu G, Zheng C (2015) A highly selective ratiometric fluorescent cu2 + and hso4ˉ probe based on a new photochromic diarylethene with a 6-aryl[1,2-c]quinazoline unit. Dyes Pigments 121:211–220. https://doi.org/10.1016/j.dyepig.2015.05.018

    CAS  Article  Google Scholar 

  28. 28.

    Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for the optical detection of cyanide ion. Chem Soc Rev 39:127–137. https://doi.org/10.1039/b907368j

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Zhang XX, Wang RJ, Fan CB, Liu G, Pu SZ (2017) A highly selective fluorescent sensor for Cd2 + based on a new diarylethene with a1,8-naphthyridine unit. Dyes Pigments 139:208–217. https://doi.org/10.1016/j.dyepig.2016.12.023

    CAS  Article  Google Scholar 

  30. 30.

    Chen XQ, Lee J, Jou MJ, Kim JM, Yoon J (2009) Colorimetric and fluorometric detection of cationic surfactants based on conjugated polydiacetylene supramolecules. Chem Commun 23(23):3434–3436. https://doi.org/10.1039/b904542b

    CAS  Article  Google Scholar 

  31. 31.

    Sreejith S, Divya KP, Ajayaghosh A (2008) A Near-Infrared Squaraine Dye as a Latent Ratiometric Fluorophore for the Detection of Aminothiol Content in Blood Plasma. Angew Chem 120:8001–8005. https://doi.org/10.1002/ange.200803194

    Article  Google Scholar 

  32. 32.

    Moragues ME, Martínez-Máñez R, Sancenón F (2011) Chromogenic and fluorogenic chemosensors and reagents for anions.A comprehensive review of the year 2009. Chem Soc Rev 40:2593–2643. https://doi.org/10.1039/c0cs00015a

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Yao Z, Feng X, Li C, Shi G (2009) Conjugated polyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione. Chem Commun 39(39):5886–5888. https://doi.org/10.1039/b912811e

    CAS  Article  Google Scholar 

  34. 34.

    Tolbert TJ, Wong CH (2002) New methods for proteomic research: preparation of proteins with n-terminal cysteines for labeling and conjugation. Angew Chem Int Ed 114:2275–2278. https://doi.org/10.1002/1521-3757(20020617)114:12<2275::AID-ANGE2275>3.0.CO;2-X

    Article  Google Scholar 

  35. 35.

    Kim TK, Lee DN, Kim HJ (2008) Highly selective fluorescent sensor for homocysteine and cysteine. Tetrahedron Let 49(33):4879–4881. https://doi.org/10.1016/j.tetlet.2008.06.003

    CAS  Article  Google Scholar 

  36. 36.

    Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G (2007) A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells. J Am Chem Soc 129:11666–11667. https://doi.org/10.1021/ja072572q

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N (2005) 2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to ellman s reagent in thiol-quantification enzyme assays. Angew Chem Int Ed 117:2982. https://doi.org/10.1002/ange.200500114

  38. 38.

    Ji S, Yang J, Yang Q, Liu S, Chen M, Zhao J (2009) Tuning the Intramolecular Charge Transfer of Alkynylpyrenes: Effecton Photophysical Properties and Its Application in Design of OFF-ONFluorescent Thiol Probes. J Org Chem 74:4855–4865. https://doi.org/10.1021/jo900588e

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Pires MM, Chmielewski J (2008) Fluorescence imaging of cellular glutathione using a latent rhodamine. Org lett 10(5):837–840. https://doi.org/10.1021/ol702769n

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Bouffard J, Kim Y, Swager TM, Weissleder R, Hilderbrand SA (2008) A highly selective fluorescent probe for thiol bioimaging. Org lett 10:37–40. https://doi.org/10.1021/ol702539v

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Tang B, Yin L, Wang X, Chen Z, Tong L, Xu K (2009) A fast-response, highly sensitive and specific organoselenium fluorescent probe for thiols and its application in bioimaging. Chem Commun 35:5293–5295. https://doi.org/10.1039/b909542j

    CAS  Article  Google Scholar 

  42. 42.

    Zhu J, Dhimitruka I, Pei D (2004) 5-(2-Aminoethyl)dithio-2-nitrobenzoate as a more base-stable alternative to Ellman’s reagent. Org Lett 6(21):3809–3812. https://doi.org/10.1021/ol048404+

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Pullela PK, Chiku T, Carvan MJ, Sem DS (2006) Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes. Anal Biochem 352:265–273. https://doi.org/10.1016/j.ab.2006.01.047

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Piggott AM, Karuso P (2007) Fluorometric assay for the determination of glutathione reductase activity. Anal Chem 79:8769–8773. https://doi.org/10.1021/ac071518p

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Nie L, Ma H, Sun M, Li X, Su M, Liang S (2003) Direct chemiluminescence determination of cysteine in human serum using quinine-Ce(IV) system. Talanta 59(5):959–964. https://doi.org/10.1016/s0039-9140(02)00649-5

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Wang S, Ma H, Li J, Chen X, Bao Z, Sun S (2006) Direct determination of reduced glutathione in biological fluids by Ce(IV)–quinine chemiluminescence. Talanta 70: 518–521. https://doi.org/10.1016/j.talanta.2005.12.052

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Rezaei B, Mokhtari A (2007) A simple and rapid flow injection chemiluminescence determination of cysteine with Ru(phen)32+–Ce(IV) system. Acta Part A 66:359–363. https://doi.org/10.1016/j.saa.2006.03.005

    CAS  Article  Google Scholar 

  48. 48.

    Montero D, Tachibana C, Winther JR, Appenzeller-Herzog C (2013) Intracellular glutathione pools are heterogeneously concentrated. Redox Biol 1:508–513. https://doi.org/10.1016/j.redox.2013.10.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Huo F, Kang J, Yin C, Zhang Y, Chao J (2015) A turn-on green fluorescent thiol probe based on the 1,2-addition reaction and its application for bioimaging. Sens Actuators B: Chem 207:139–143. https://doi.org/10.1016/j.snb.2014.10.023

    CAS  Article  Google Scholar 

  50. 50.

    Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39:2120–2135. https://doi.org/10.1039/B925092A

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Jung HS, Chen X, Kim JS, Yoon J (2013) ChemInform Abstract: Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42:6019–6031. https://doi.org/10.1002/chin.201337246

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Wang Q, Wei X, Li C, Xie Y (2018) A novel p-aminophenylthio- and cyano- substituted BODIPY as a fluorescence turn-on probe for distinguishing cysteine and homocysteine from glutathione. Dyes Pigments 148:212–218. https://doi.org/10.1016/j.dyepig.2017.09.020

    CAS  Article  Google Scholar 

  53. 53.

    Ding S, Feng G (2016) Smart probe for rapid and simultaneous detection and discrimination of hydrogen sulfide, cysteine/homocysteine, and glutathione. Sens Actuators B: Chem 235:691–697. https://doi.org/10.1016/j.snb.2016.05.146

    CAS  Article  Google Scholar 

  54. 54.

    He L, Yang X, Xu K, Kong X, Lin W (2017) A multi-signal fluorescent probe for simultaneously distinguishing and sequentially sensing cysteine/homocysteine, glutathione, and hydrogen sulfide in living cells. Chem Sci 8:6257–6265. https://doi.org/10.1039/C7SC00423K

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Kand D, Saha D, Talukdar P (2014) Off-on type fluorescent NBD-probe for selective sensing of cysteine and homocysteine over glutathione. Sens Actuators B: Chem 196:440–449. https://doi.org/10.1016/j.snb.2014.02.023

    CAS  Article  Google Scholar 

  56. 56.

    Zhu S, Lin W, Yuan L (2013) Development of a ratiometric fluorescent pH probe for cell imaging based on a coumarin–quinoline platform. Dyes Pigments 99:465–471. https://doi.org/10.1016/j.dyepig.2013.05.01

    CAS  Article  Google Scholar 

  57. 57.

    He G, Liu X, Xu J, Ji L, Yang L, Fan A, Wang S, Wang Q (2018) Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group. Spectrochim Acta A 190:116–120. https://doi.org/10.1016/j.saa.2017.09.028

    CAS  Article  Google Scholar 

  58. 58.

    Hammers MD, Pluth MD (2014) Ratiometric measurement of hydrogen sulfide and cysteine/homocysteine ratios using a dual-fluorophore fragmentation strategy. Anal Chem 86(14):7135–7140. https://doi.org/10.1021/ac501680d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Gao X, Li X, Li L, Zhou J, Ma H (2015) A simple fluorescent off–on probe for the discrimination of cysteine from glutathione. Chem Commun 51:9388–9390. https://doi.org/10.1039/C5CC02788H

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (41867053), the Jiangxi Provincial Natural Science Foundation (20202BAB215003) and the Entrepreneurship training program for College Students (202011318039X).

Author information




Yanhua Wang: Investigation, Writing-original draft. Guowei Lu: Synthesis, Investigation. Yayi Tu: Writing-review & editing, Supervision, Validation. Shouzhi Pu: Project administration, Funding acquisition.

Corresponding authors

Correspondence to Yayi Tu or Shouzhi Pu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

For this type of study, the ethical approval was not required, because this study does not involve cell or animal manipulation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOC 390 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, G., Tu, Y. et al. A Turn‐on Fluorescent Probe for the Discrimination of Cys/Hcy and GSH With Dual Emission Signals. J Fluoresc 31, 599–607 (2021). https://doi.org/10.1007/s10895-021-02684-6

Download citation


  • Cysteine
  • Homocysteine
  • Glutathione
  • Fluorescent sensor
  • Dual emission