Abstract
In this paper, we successfully synthesized a simple and versatile fluorescent probe. This probe was not only easily prepared with a high yield, but also showed rapid selective and sensitive responses for Cys/Hcy and GSH. The probe can be used as a naked-eye detector for Cys/Hcy and GSH from other analytes. As a fluorescent sensor, it can be used to simultaneously detect and discriminate Cys/Hcy from GSH with two fluorescent emission signals without spectral crosstalk.
This is a preview of subscription content, access via your institution.









Data Availability
All the data are available.
References
- 1.
Kand D, Kalle AM, TaluKdar P (2013) Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics. Org Biomol Chem 11(10):1691–1701. https://doi.org/10.1039/C2OB27192C
- 2.
Miki H, Funato Y (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem 3:255–261. https://doi.org/10.1093/jb/mvs006
- 3.
Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radical Biol Med 28:1456–1462. https://doi.org/10.1016/s0891-5849(00)00252-5
- 4.
Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(2):345–350. https://doi.org/10.1042/0300-5127:0290345
- 5.
Chen X, Zhou Y, Peng X, Yoon J (2010) Cheminform abstract: fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 41(42):0–0. https://doi.org/10.1002/chin.201042280
- 6.
Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Kim JS, Sessler JL, Kim TW, Kang C, Kim JS (2012) A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33(3):945–953. https://doi.org/10.1016/j.biomaterials.2011.10.040
- 7.
Zheng C, Pu S, Liu G, Chen B, Dai Y (2013) A highly selective colorimetric sensor for cysteine and homocysteine based on a new photochromic diarylethene. Dyes Pigments 98(2):280–285. https://doi.org/10.1016/j.dyepig.2013.02.022
- 8.
Shahrokhian S, Saeed (2001) Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73(24):5972–5978. https://doi.org/10.1021/ac010541m
- 9.
Long L, Lin W, Chen B, Gao W, Yuan L (2011) Construction of a FRET-based ratiometric fluorescent thiol probe. Chem Commun 47(3):893–895. https://doi.org/10.1039/c0cc03806g
- 10.
Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, kayode SO, letcher KA, Lowry M, Schowalter CM, Lawrence CM, Fronczek FR, Warner IM, Strongin RM (2005) Detection of Homocysteine and Cysteine. J Am Chem Soc 127(45):15949–15958. https://doi.org/10.1021/ja054962n
- 11.
Shao N, Jin JY, Cheung SM, Yang RH, Chan WH, Mo T (2006) A Spiropyran-Based Ensemble for Visual Recognition and Quantification of Cysteine and Homocysteine at Physiological Levels. Angew Chem 118:5066–5070. https://doi.org/10.1002/ange.200600112
- 12.
Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, Wolf PA, D’Agostino RB, Wilson PWF (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483. https://doi.org/10.1016/S1062-1458(02)00690-6
- 13.
Li L, Rose P, Moore Annu PK (2011) Hydrogen Sulfide and Cell Signaling. Rev Pharmacol Toxicol 51:169–187. https://doi.org/10.1146/annurev-pharmtox-010510-100505
- 14.
Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (2009) Neuroprotective effects of hydrogen sulfide on parkinson’s disease rat models. Aging Cell 9(2):135–146. https://doi.org/10.1111/j.1474-9726.2009.00543.x
- 15.
Lee HY, Choi YP, Kim S, Yoon T, Guo Z, Lee S, Swamy KMK, Kim K, Lee JY, Shin I, Yoon J (2014) Selective homocysteine turn-on fluorescent probes and their bioimaging applications. Chem Commun 50(53):6967–6969. https://doi.org/10.1039/c4cc00243a
- 16.
Yang Y, Huo F, Yin C, Zheng A, Li Y, Liu B, Chao J, Nie Z, Li YL, Martínez Máñez R (2013) Thiol–chromene click chemistry: a coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications. Biosens Bioelctron 47:300–306. https://doi.org/10.1016/j.bios.2013.03.007
- 17.
Yin J, KwonY, Kim D, Lee D, Yoon J (2014) Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J Am Chem 136(23):5351–5358. https://doi.org/10.1021/ja412628z
- 18.
Yang Y, Huo FJ, Yin C, Chao J, Zhang Y (2015) An ‘off–on’ fluorescent probe for specially recognize on cys and its application in bioimaging. Dyes Pigments 114:105–109. https://doi.org/10.1016/j.dyepig.2014.11.004
- 19.
Chen W, Zhao Y, Seefeldt T, Guan X (2008) Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J Pharm Biomed Anal 48: 1375–1380. https://doi.org/10.1016/j.jpba.2008.08.033
- 20.
Inoue T, Kirchhoff JR (2000) Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal Chem 72(18):5755–5760. https://doi.org/10.1021/ac0302399
- 21.
Zinellu A, Sotgia S, Scanu B, Usai MF, Fois AG, Spada V, Deledda A, Deiana L, Pirina P, Carru C (2009) Simultaneous detection of n-acetyl-l-cysteine and physiological low molecular mass thiols in plasma by capillary electrophoresis. Amino Acids 37:395–400. https://doi.org/10.1007/s00726-008-0167-x
- 22.
Burford N, Eelman MD, Mahony DE, Morash M (2003) Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents. Chem Commun 1:146–147. https://doi.org/10.1039/B210570E
- 23.
Rafii M, Elango R, Courtney-Martin G, House JD, Fisher L, Pencharz PB (2007) High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography–electrospray tandem mass spectrometry. Anal Biochem 371(1):71–81. https://doi.org/10.1016/j.ab.2007.07.026
- 24.
Amarnath K, Amarnath V, Amarnath K, Valentine HL, Valentine WM (2003) A specific hplc-uv method for the determination of cysteine and related aminothiols in biological samples. Talanta 60(6):1229–1238. https://doi.org/10.1016/S0039-9140(03)00232-7
- 25.
Wen M, Liu H, Zhang F, Zhu Y, Liu D, Tian Y, Wu Q (2009) Amorphous FeNiPt nanoparticles with tunable length for electrocatalysis and electrochemical determination of thiols. Chem Commun 4530–4532. https://doi.org/10.1039/b907379e
- 26.
Yin C, Huo F, Zhang J, Yang Y, Lv H, Li S, Martínez-Máñez R (2013) Thiol-addition reactions and their applications inthiol recognition. Chem Soc Rev 42:6032–6059. https://doi.org/10.1039/c3cs60055f
- 27.
Jia H, Pu S, Fan C, Liu G, Zheng C (2015) A highly selective ratiometric fluorescent cu2 + and hso4ˉ probe based on a new photochromic diarylethene with a 6-aryl[1,2-c]quinazoline unit. Dyes Pigments 121:211–220. https://doi.org/10.1016/j.dyepig.2015.05.018
- 28.
Xu Z, Chen X, Kim HN, Yoon J (2010) Sensors for the optical detection of cyanide ion. Chem Soc Rev 39:127–137. https://doi.org/10.1039/b907368j
- 29.
Zhang XX, Wang RJ, Fan CB, Liu G, Pu SZ (2017) A highly selective fluorescent sensor for Cd2 + based on a new diarylethene with a1,8-naphthyridine unit. Dyes Pigments 139:208–217. https://doi.org/10.1016/j.dyepig.2016.12.023
- 30.
Chen XQ, Lee J, Jou MJ, Kim JM, Yoon J (2009) Colorimetric and fluorometric detection of cationic surfactants based on conjugated polydiacetylene supramolecules. Chem Commun 23(23):3434–3436. https://doi.org/10.1039/b904542b
- 31.
Sreejith S, Divya KP, Ajayaghosh A (2008) A Near-Infrared Squaraine Dye as a Latent Ratiometric Fluorophore for the Detection of Aminothiol Content in Blood Plasma. Angew Chem 120:8001–8005. https://doi.org/10.1002/ange.200803194
- 32.
Moragues ME, Martínez-Máñez R, Sancenón F (2011) Chromogenic and fluorogenic chemosensors and reagents for anions.A comprehensive review of the year 2009. Chem Soc Rev 40:2593–2643. https://doi.org/10.1039/c0cs00015a
- 33.
Yao Z, Feng X, Li C, Shi G (2009) Conjugated polyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione. Chem Commun 39(39):5886–5888. https://doi.org/10.1039/b912811e
- 34.
Tolbert TJ, Wong CH (2002) New methods for proteomic research: preparation of proteins with n-terminal cysteines for labeling and conjugation. Angew Chem Int Ed 114:2275–2278. https://doi.org/10.1002/1521-3757(20020617)114:12<2275::AID-ANGE2275>3.0.CO;2-X
- 35.
Kim TK, Lee DN, Kim HJ (2008) Highly selective fluorescent sensor for homocysteine and cysteine. Tetrahedron Let 49(33):4879–4881. https://doi.org/10.1016/j.tetlet.2008.06.003
- 36.
Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G (2007) A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells. J Am Chem Soc 129:11666–11667. https://doi.org/10.1021/ja072572q
- 37.
Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N (2005) 2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to ellman s reagent in thiol-quantification enzyme assays. Angew Chem Int Ed 117:2982. https://doi.org/10.1002/ange.200500114
- 38.
Ji S, Yang J, Yang Q, Liu S, Chen M, Zhao J (2009) Tuning the Intramolecular Charge Transfer of Alkynylpyrenes: Effecton Photophysical Properties and Its Application in Design of OFF-ONFluorescent Thiol Probes. J Org Chem 74:4855–4865. https://doi.org/10.1021/jo900588e
- 39.
Pires MM, Chmielewski J (2008) Fluorescence imaging of cellular glutathione using a latent rhodamine. Org lett 10(5):837–840. https://doi.org/10.1021/ol702769n
- 40.
Bouffard J, Kim Y, Swager TM, Weissleder R, Hilderbrand SA (2008) A highly selective fluorescent probe for thiol bioimaging. Org lett 10:37–40. https://doi.org/10.1021/ol702539v
- 41.
Tang B, Yin L, Wang X, Chen Z, Tong L, Xu K (2009) A fast-response, highly sensitive and specific organoselenium fluorescent probe for thiols and its application in bioimaging. Chem Commun 35:5293–5295. https://doi.org/10.1039/b909542j
- 42.
Zhu J, Dhimitruka I, Pei D (2004) 5-(2-Aminoethyl)dithio-2-nitrobenzoate as a more base-stable alternative to Ellman’s reagent. Org Lett 6(21):3809–3812. https://doi.org/10.1021/ol048404+
- 43.
Pullela PK, Chiku T, Carvan MJ, Sem DS (2006) Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes. Anal Biochem 352:265–273. https://doi.org/10.1016/j.ab.2006.01.047
- 44.
Piggott AM, Karuso P (2007) Fluorometric assay for the determination of glutathione reductase activity. Anal Chem 79:8769–8773. https://doi.org/10.1021/ac071518p
- 45.
Nie L, Ma H, Sun M, Li X, Su M, Liang S (2003) Direct chemiluminescence determination of cysteine in human serum using quinine-Ce(IV) system. Talanta 59(5):959–964. https://doi.org/10.1016/s0039-9140(02)00649-5
- 46.
Wang S, Ma H, Li J, Chen X, Bao Z, Sun S (2006) Direct determination of reduced glutathione in biological fluids by Ce(IV)–quinine chemiluminescence. Talanta 70: 518–521. https://doi.org/10.1016/j.talanta.2005.12.052
- 47.
Rezaei B, Mokhtari A (2007) A simple and rapid flow injection chemiluminescence determination of cysteine with Ru(phen)32+–Ce(IV) system. Acta Part A 66:359–363. https://doi.org/10.1016/j.saa.2006.03.005
- 48.
Montero D, Tachibana C, Winther JR, Appenzeller-Herzog C (2013) Intracellular glutathione pools are heterogeneously concentrated. Redox Biol 1:508–513. https://doi.org/10.1016/j.redox.2013.10.005
- 49.
Huo F, Kang J, Yin C, Zhang Y, Chao J (2015) A turn-on green fluorescent thiol probe based on the 1,2-addition reaction and its application for bioimaging. Sens Actuators B: Chem 207:139–143. https://doi.org/10.1016/j.snb.2014.10.023
- 50.
Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39:2120–2135. https://doi.org/10.1039/B925092A
- 51.
Jung HS, Chen X, Kim JS, Yoon J (2013) ChemInform Abstract: Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42:6019–6031. https://doi.org/10.1002/chin.201337246
- 52.
Wang Q, Wei X, Li C, Xie Y (2018) A novel p-aminophenylthio- and cyano- substituted BODIPY as a fluorescence turn-on probe for distinguishing cysteine and homocysteine from glutathione. Dyes Pigments 148:212–218. https://doi.org/10.1016/j.dyepig.2017.09.020
- 53.
Ding S, Feng G (2016) Smart probe for rapid and simultaneous detection and discrimination of hydrogen sulfide, cysteine/homocysteine, and glutathione. Sens Actuators B: Chem 235:691–697. https://doi.org/10.1016/j.snb.2016.05.146
- 54.
He L, Yang X, Xu K, Kong X, Lin W (2017) A multi-signal fluorescent probe for simultaneously distinguishing and sequentially sensing cysteine/homocysteine, glutathione, and hydrogen sulfide in living cells. Chem Sci 8:6257–6265. https://doi.org/10.1039/C7SC00423K
- 55.
Kand D, Saha D, Talukdar P (2014) Off-on type fluorescent NBD-probe for selective sensing of cysteine and homocysteine over glutathione. Sens Actuators B: Chem 196:440–449. https://doi.org/10.1016/j.snb.2014.02.023
- 56.
Zhu S, Lin W, Yuan L (2013) Development of a ratiometric fluorescent pH probe for cell imaging based on a coumarin–quinoline platform. Dyes Pigments 99:465–471. https://doi.org/10.1016/j.dyepig.2013.05.01
- 57.
He G, Liu X, Xu J, Ji L, Yang L, Fan A, Wang S, Wang Q (2018) Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group. Spectrochim Acta A 190:116–120. https://doi.org/10.1016/j.saa.2017.09.028
- 58.
Hammers MD, Pluth MD (2014) Ratiometric measurement of hydrogen sulfide and cysteine/homocysteine ratios using a dual-fluorophore fragmentation strategy. Anal Chem 86(14):7135–7140. https://doi.org/10.1021/ac501680d
- 59.
Gao X, Li X, Li L, Zhou J, Ma H (2015) A simple fluorescent off–on probe for the discrimination of cysteine from glutathione. Chem Commun 51:9388–9390. https://doi.org/10.1039/C5CC02788H
Acknowledgements
This work was supported by the National Natural Science Foundation of China (41867053), the Jiangxi Provincial Natural Science Foundation (20202BAB215003) and the Entrepreneurship training program for College Students (202011318039X).
Author information
Affiliations
Contributions
Yanhua Wang: Investigation, Writing-original draft. Guowei Lu: Synthesis, Investigation. Yayi Tu: Writing-review & editing, Supervision, Validation. Shouzhi Pu: Project administration, Funding acquisition.
Corresponding authors
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Ethics Approval
For this type of study, the ethical approval was not required, because this study does not involve cell or animal manipulation.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(DOC 390 kb)
Rights and permissions
About this article
Cite this article
Wang, Y., Lu, G., Tu, Y. et al. A Turn‐on Fluorescent Probe for the Discrimination of Cys/Hcy and GSH With Dual Emission Signals. J Fluoresc 31, 599–607 (2021). https://doi.org/10.1007/s10895-021-02684-6
Received:
Accepted:
Published:
Issue Date:
Keywords
- Cysteine
- Homocysteine
- Glutathione
- Fluorescent sensor
- Dual emission