Dual-Emitting N/S-Doped Carbon Dots-Based Ratiometric Fluorescent and Light Scattering Sensor for High Precision Detection of Fe(III) Ions

Abstract

Precise and rapid sensing of Fe(III) under concerned facile conditions is important in environmental monitoring. Herein, a facile and label-free ratiometric sensor is constructed for selective determination of Fe(III) ions by coupling second-order scattering (SOS) and fluorescence. We were synthesized fluorescent N, S-doped carbon dots (N/S-CDs) via facile one-step hydrothermal treatment with an intensive fluorescence and a weak SOS signal and high quantum yield (32%). The fluorescence of N/S-CDs was quenched whereas the intensity of SOS was relatively increased by Fe(III) ions due to aggregation-induced fluorescence quenching or enhancement. Based on this effect, a novel fluorescent ratiometric probe with the combined fluorescence and SOS is proposed for the sensing of Fe(III) ions, and with the detection limit of 83 nM and linear range of 0.1–10 μM and 10–40 μM, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim Acta 184:1899–1914

    CAS  Article  Google Scholar 

  2. 2.

    Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343–368

    CAS  Article  Google Scholar 

  3. 3.

    Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    CAS  Article  Google Scholar 

  4. 4.

    Omer KM (2018) Highly passivated phosphorous and nitrogen co-doped carbon quantum dots and fluorometric assay for detection of copper ions. Anal Bioanal Chem 410:6331–6336

    CAS  Article  Google Scholar 

  5. 5.

    Han G, Zhao J, Zhang R, Tian X, Liu Z, Wang A, Liu R, Liu B, Han M-Y, Gao X, Zhang Z (2019) Membrane‐Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angewandte Chemie-International Edition 58:7087–7091

    CAS  Article  Google Scholar 

  6. 6.

    Molaei MJ (2019) A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 196:456–478

    CAS  Article  Google Scholar 

  7. 7.

    El-Hnayn R, Canabady-Rochelle L, Desmarets C, Balan L, Rinnert H, Joubert O, Medjahdi G, Ben Ouada H, Schneider R (2020) Nanomaterials:10

  8. 8.

    Omer KM, Tofiq DI, Hassan AQ (2018) Microchim Acta:185

  9. 9.

    Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim J-J, Lee YR (2017) Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensors and Actuators B-Chemical 246:497–509

    CAS  Article  Google Scholar 

  10. 10.

    Du F, Cheng Z, Tan W, Sun L, Ruan G (2019) Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 226:117602–117602

    Article  Google Scholar 

  11. 11.

    Wang C, Lin H, Xu Z, Huang Y, Humphrey MG, Zhang C (2016) Tunable Carbon-Dot-Based Dual-Emission Fluorescent Nanohybrids for Ratiometric Optical Thermometry in Living Cells. ACS Appl Mater Interfaces 8:6621–6628

    CAS  Article  Google Scholar 

  12. 12.

    Huang X, Jiang H, Li Y, Sang L, Zhou H, Shahzad SA, Ibupoto ZH, Yu C (2017) Synthesis of silica nanoparticles doped with [Ru(bpy)3]2+ and decorated with silver nanoclusters for the ratiometric photoluminescent determination and intracellular imaging of Cu(II) ions. Microchim Acta 184:2325–2331

    CAS  Article  Google Scholar 

  13. 13.

    Cheng H-Y, Li D-C, Cheng B-H, Jiang H (2019) Highly stable and selective measurement of Fe3+ ions under environmentally relevant conditions via an excitation-based multiwavelength method using N, S-doped carbon dots. Environ Res 170:443–451

    CAS  Article  Google Scholar 

  14. 14.

    Omer KM, Sartin M (2019) Dual-mode colorimetric and fluorometric probe for ferric ion detection using N-doped carbon dots prepared via hydrothermal synthesis followed by microwave irradiation. Opt Mater 94:330–336

    CAS  Article  Google Scholar 

  15. 15.

    Mu Z, Hua J, Feng S, Yang Y (2019) A ratiometric fluorescence and light scattering sensing platform based on Cu-doped carbon dots for tryptophan and Fe(III). Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 219:248–256

    CAS  Article  Google Scholar 

  16. 16.

    Luo M, Hua Y, Liang Y, Han J, Liu D, Zhao W, Wang P (2017) Synthesis of novel β-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosens Bioelectron 98:195–201

    CAS  Article  Google Scholar 

  17. 17.

    Jhonsi MA, Thulasi S (2016) A novel fluorescent carbon dots derived from tamarind. Chem Phys Lett 661:179–184

    Article  Google Scholar 

  18. 18.

    Liu W, Diao H, Chang H, Wang H, Li T, Wei W (2017) Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors and Actuators B-Chemical 241:190–198

    Article  Google Scholar 

  19. 19.

    Peng D, Zhang L, Liang R-P, Qiu J-D (2018) Rapid Detection of Mercury Ions Based on Nitrogen-Doped Graphene Quantum Dots Accelerating Formation of Manganese Porphyrin. Acs Sensors 3:1040–1047

    CAS  Article  Google Scholar 

  20. 20.

    Song W, Duan W, Liu Y, Ye Z, Chen Y, Chen H, Qi S, Wu J, Liu D, Xiao L, Ren C, Chen X (2017) Ratiometric Detection of Intracellular Lysine and pH with One-Pot Synthesized Dual Emissive Carbon Dots. Anal Chem 89:13626–13633

    CAS  Article  Google Scholar 

  21. 21.

    Chen Q, Zhu P, Xiong J, Gao L, Tan K (2020) Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy:224

  22. 22.

    Pang Y, Gao H, Wu S, Li X (2017) Facile synthesis the nitrogen and sulfur co-doped carbon dots for selective fluorescence detection of heavy metal ions. Mater Lett 193:236–239

    CAS  Article  Google Scholar 

  23. 23.

    Li S, Li Y, Cao J, Zhu J, Fan L, Li X (2014) Sulfur-Doped Graphene Quantum Dots as a Novel Fluorescent Probe for Highly Selective and Sensitive Detection of Fe3+. Anal Chem 86:10201–10207

    CAS  Article  Google Scholar 

  24. 24.

    Gong J, An X, Yan X (2014) A novel rapid and green synthesis of highly luminescent carbon dots with good biocompatibility for cell imaging. New J Chem 38:1376–1379

    CAS  Article  Google Scholar 

  25. 25.

    Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Haddad RE, Fan H, Sun Z (2014) Sci Rep:4

  26. 26.

    Dhenadhayalan N, Lin K-C, Suresh R, Ramamurthy P (2016) Unravelling the Multiple Emissive States in Citric-Acid-Derived Carbon Dots. J Phys Chem C 120:1252–1261

    CAS  Article  Google Scholar 

  27. 27.

    Li PH, Lin JY, Chen CT, Ciou WR, Chan PH, Luo L, Hsu HY, Diau EW, Chen YC (2012) Using Gold Nanoclusters As Selective Luminescent Probes for Phosphate-Containing Metabolites. Anal Chem 84:5484–5488

    CAS  Article  Google Scholar 

  28. 28.

    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim Acta 184:1899–1914

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaling Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 413 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Xu, X., Meng, D. et al. Dual-Emitting N/S-Doped Carbon Dots-Based Ratiometric Fluorescent and Light Scattering Sensor for High Precision Detection of Fe(III) Ions. J Fluoresc (2020). https://doi.org/10.1007/s10895-020-02571-6

Download citation

Keywords

  • Fe(III) detection
  • N, S-doped carbon dots
  • Ratiometric fluorescent probe
  • Second-order scattering