A Fluoran-Based Cu2+-Selective Fluorescent Probe and its Application in Cell Imaging

Abstract

Based on a fluoran skeleton, we herein reported a new fluorescent probe FLACu for Cu2+ by facile modification of the spirolactone of dye 1 with phenylhydrazine. Taking advantage of the spirolactam moiety, FLACu only delivers a specific “off-on” fluorescence signal output towards Cu2+ when treated with various metal ions, which has been well elucidated as the result of spirolactam ring opening and hydrolysis processes induced by copper ion. Meanwhile, the limit of detection (LOD) for FLACu has been estimated to be 35.4 nM and a pH range of 5.0–9.0 is evaluated to be suitable for Cu2+ detection. Significantly, FLACu shows low cell cytotoxicity and can be further ultilzied in the detection of exogenous Cu2+ in the living Hela cells.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Chellan P, Sadler PJ (2015) The elements of life and medicines. Phil Trans R Soc A 373:20140182

    PubMed  Google Scholar 

  2. 2.

    Kaim W, Rall J (1996) Copper – a “modern” bioelement. Angew Chem Int Ed 35:43–60

    CAS  Google Scholar 

  3. 3.

    Kosman DJ (2010) Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem 15:15–28

    CAS  PubMed  Google Scholar 

  4. 4.

    Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    CAS  PubMed  Google Scholar 

  5. 5.

    Cotruvo JA Jr, Aron AT, Ramos-Torres KM, Chang CJ (2015) Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 44:4400–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Saleem M, Rafiq M, Hanif M, Shaheen MA, Seo SY (2018) A brief review on fluorescent copper sensor based on conjugated organic dyes. J Fluores 28:97–165

    Google Scholar 

  7. 7.

    Zhou C, Song Y, Xiao N, Li Y, Xu J (2014) A novel highly sensitive and selective fluorescent sensor for imaging copper (II) in living cells. J Fluores 24:1331–1336

    CAS  Google Scholar 

  8. 8.

    Sadia M, Naz R, Khan J, Khan R (2018) Synthesis and evaluation of a schiff-based fluorescent chemosensors for the selective and sensitive detection of Cu2+ in aqueous media with fluorescence off-on responses. J Fluores 28:1281–1294

    CAS  Google Scholar 

  9. 9.

    Quan L, Sun T, Lin W, Guan X, Zheng M, Xie Z, Jing X (2014) BODIPY fluorescent chemosensor for Cu2+ detection and its applications in living cells: fast response and high sensitivity. J Fluores 24:841–846

    CAS  Google Scholar 

  10. 10.

    Singh P, Mittal LS, Kumar S, Bhargava G, Kumar S (2014) Perylene diimide appended with 8-hydroxyquinoline for ratiometric detection of Cu2+ ions and metal displacement driven “turn on” cyanide sensing. J Fluores 24:909–915

    CAS  Google Scholar 

  11. 11.

    Jiang H, Li Z, Kang Y, Ding L, Qiao S, Jia S, Liu W, Liu W (2017) A two-photon fluorescent probe for Cu2+ based on dansyl moiety and its application in bioimaging. Sens Actuators B Chem 242:112–117

    CAS  Google Scholar 

  12. 12.

    Li MM, Huang SY, Ye H, Ge F, Miao JY, Zhao BX (2013) A new pyrazoline-based fluorescent probe for Cu2+ in live cells. J Fluoresc 23:799–806

    CAS  PubMed  Google Scholar 

  13. 13.

    Xue X, Fang H, Chen H, Zhang C, Zhu C, Bai Y, He W, Guo Z (2016) In vivo fluorescence imaging for Cu2+ in live mice by a new NIR fluorescent sensor. Dyes Pigments 130:116–121

    CAS  Google Scholar 

  14. 14.

    Dujols V, Ford F, Czarnik AW (1997) A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J Am Chem Soc 119:7386–7387

    CAS  Google Scholar 

  15. 15.

    Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev 37:1465–1472

    CAS  PubMed  Google Scholar 

  16. 16.

    Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2011) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    PubMed  Google Scholar 

  17. 17.

    Sun YQ, Liu J, Lv X, Liu Y, Zhao Y, Guo W (2012) Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes. Angew Chem Int Ed 51:7634–7636

    CAS  Google Scholar 

  18. 18.

    Yang Z, Zhao Y, Chen S, Bu Y, Zhu X, Du Y, Li F (2016) A highly sensitive and selective colorimetric “off-on” chemosensor for Cu2+ in aqueous media based on a rhodamine derivative bearing thiophene group. Sens Actuators B Chem 235:414–419

    CAS  Google Scholar 

  19. 19.

    Shivaprasad M, Govindaraju T (2011) Rhodamine based bright red colourimetric and turn-on fluorescence chemosensor for selective detection of Cu2+. Mater Technol 26:168–172

    CAS  Google Scholar 

  20. 20.

    Yu C, Wang T, Xu K, Zhao J, Li M, Weng S, Zhang J (2013) Characterization of a highly Cu2+-selective fluorescent probe derived from rhodamine B. Dyes Pigments 96:38–44

    CAS  Google Scholar 

  21. 21.

    Pu S, Ma L, Liu G, Ding H, Chen B (2015) A multiple switching diarylethene with a phenyl-linked rhodamine B unit and its application as chemosensor for Cu2+. Dyes Pigments 113:70–77

    CAS  Google Scholar 

  22. 22.

    Hu ZQ, Wang XM, Feng YC, Ding L, Lu HY (2011) Sulfonyl rhodamine hydrazide: a sensitive and selective chromogenic and fluorescent chemodosimeter for copper ion in aqueous media. Dyes Pigments 88:257–261

    CAS  Google Scholar 

  23. 23.

    Zhang B, Diao Q, Ma P, Liu X, Song D, Wang X (2016) A sensitive fluorescent probe for Cu2+ based on rhodamine B derivatives and its application to drinking water examination and living cells imaging. Sens Actuators B Chem 225:579–585

    CAS  Google Scholar 

  24. 24.

    Ren M, Deng B, Wang JY, Liu ZR, Lin W (2015) A dual-emission fluorescence - enhanced probe for imaging copper (II) ions in lysosomes. J Mater Chem B 3:6746–6752

    CAS  PubMed  Google Scholar 

  25. 25.

    Yuan Y, Sun S, Liu S, Song X, Peng X (2015) Highly sensitive and selective turn-on fluorescent probes for Cu2+ based on rhodamine B. J Mater Chem B 3:5261–5265

    CAS  PubMed  Google Scholar 

  26. 26.

    Huang K, Han DF, Li XL, Peng MN, Qiu Q, Qin DB (2019) A novel biscarbazole-xanthene hybrid fluorescent probe for selective and sensitive detection of Cu 2+ and applications in bioimaging. J Fluoresc 29:1–9

    CAS  Google Scholar 

  27. 27.

    Xu ZQ, Mao XJ, Wang Y, Wu WN, Mao PD, Zhao XL, Fan YC, Li HJ (2017) Rhodamine 6G hydrazone with coumarin unit: a novel single-molecule multianalyte (Cu2+ and Hg2+) sensor at different pH value. RSC Adv 7:42312–42319

    CAS  Google Scholar 

  28. 28.

    She M, Yang Z, Hao L, Wang Z, Luo T, Obst M, Liu P, Shen Y, Zhang S, Li J (2016) A novel approach to study the structure-property relationships and applications in living systems of modular Cu2+ fluorescent probes. Sci Rep 6:28972

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tang J, Ma S, Zhang D, Liu Y, Zhao Y, Ye Y (2016) Highly sensitive and fast responsive ratiometric fluorescent probe for Cu2+ based on a naphthalimide-rhodamine dyad and its application in living cell imaging. Sens Actuators B Chem 236:109–115

    CAS  Google Scholar 

  30. 30.

    Yuan L, Lin W, Chen B, Xie Y (2011) Development of FRET-based ratiometric fluorescent Cu2+ chemodosimeters and the applications for living cell imaging. Org Lett 14:432–435

    PubMed  Google Scholar 

  31. 31.

    Ghosh K, Sarkar T, Samadder A, Khuda-Bukhsh AR (2012) Rhodamine-based bis-sulfonamide as a sensing probe for Cu2+ and Hg2+ ions. New J Chem 36:2121–2127

    CAS  Google Scholar 

  32. 32.

    Nakamura K, Kobayashi Y, Kanazawa K, Kobayashi N (2013) Thermoswitchable emission and coloration of a composite material containing a europium(III) complex and a fluoran dye. J Mater Chem C 1:617–620

    CAS  Google Scholar 

  33. 33.

    Ohashi T, Gontani S, Miyanaga K, Kurata T, Akatani Y, Matsumoto S (2017) A novel black crystalline composite based on a fluoran dye and a bisphenol S derivative for high performance thermal papers. Dyes Pigments 142:198–200

    CAS  Google Scholar 

  34. 34.

    Azizian F, Field AJ, Griffiths J, Heron BM (2012) Palladium-catalysed amination of bromofluorans and an investigation of their thermochromic behaviour. Dyes Pigments 92:524–530

    CAS  Google Scholar 

  35. 35.

    Wang S, Gwon SY, Son YA, Matsumoto S, Hwang IJ, Kim SH (2009) Highly selective colorimetric signaling of iron cations based on fluoran dye. Mol Cryst Liq Cryst 504:155–163

    CAS  Google Scholar 

  36. 36.

    Wang S, Gwon SY, Kim SH (2010) A highly selective and sensitive colorimetric chemosensor for Fe2+ based on fluoran dye. Spectrochim Acta A Mol Biomol Spectrosc 76:293–296

    PubMed  Google Scholar 

  37. 37.

    Huang K, Yue Y, Jiao X, Liu C, Wang Q, He S, Zhao L, Zeng X (2017) Fluorescence regulation of 4-aminobenzofluoran and its applications for Cu2+-selective fluorescent probe and bioimaging. Dyes Pigments 143:379–386

    CAS  Google Scholar 

  38. 38.

    Huang K, He S, Zeng X (2017) A fluoran-based fluorescent probe via a strategy of blocking the intramolecular photoinduced electron transfer (PET) process. Tetrahedron Lett 58:2004–2008

    CAS  Google Scholar 

  39. 39.

    Huang K, Han DF, Li XL, Peng MN, Zeng XS, Jing LH, Qin DB (2019) A new Cu2+-selective fluorescent probe with six-membered spirocyclic hydrazide and its application in cell imaging. Dyes Pigments 171:107701

    CAS  Google Scholar 

  40. 40.

    Li Y, Li K, Wang L, He Y, He J, Hou H, Tang BZ (2017) Fluoran salicylaldehyde hydrazone Zn(ii) complexes: reversible photochromic systems both in solution and in a solid matrix. J Mater Chem C 5:7553–7560

    CAS  Google Scholar 

  41. 41.

    Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T, Kim JS (2009) Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131:2008–2012

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Doctoral Scientific Research Start-up Foundation of China West Normal University (18Q022), Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province (CSPC201802), the National Natural Science Foundation of China (21671159).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kun Huang or Dabin Qin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 971 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, Q., Yu, B., Huang, K. et al. A Fluoran-Based Cu2+-Selective Fluorescent Probe and its Application in Cell Imaging. J Fluoresc 30, 859–866 (2020). https://doi.org/10.1007/s10895-020-02551-w

Download citation

Keywords

  • Fluorescent probe
  • Fluoran
  • Copper ion
  • Cell imaging