Non-negative Factor (NNF) Assisted Partial Least Square (PLS) Analysis of Excitation-Emission Matrix Fluorescence Spectroscopic Data Sets: Automating the Identification and Quantification of Multifluorophoric Mixtures

  • Keshav KumarEmail author


Excitation-emission matrix fluorescence spectroscopy is simple and sensitive techniques that generate the composite fluorescence fingerprints. EEMF can be used for the identification and quantification of the fluorophores without involving any pre-separation step provided a suitable data analysis approach is applied. In the present work, non-negative factor (NNF) assisted partial least square (PLS) analysis is used for the analysis of EEMF data sets acquired for the dilute aqueous mixtures of fluorophores. The proposed approach allows automatic selection of the optimum number of factors for NNF analysis by incorporating the Akaike information criterion. The proposed approach also incorporates the spectral correlation analysis for the automatic identification of the NNF retrieved EEMF spectral profiles. The NNF retrieved contribution values along with their real concentration values are subjected to PLS analysis to develop a calibration model. The proposed approach was successfully tested using EEMF data acquired for the dilute aqueous mixtures of Catechol, Hydroquinone, Indole, Tryptophan and Tyrosine. The results were evaluated using the various statistical parameters and each of them found to well within the expected limits. In summary, NNF assisted PLS analysis of EEMF technique allows automatized analysis of the multifluorophoric mixtures with minimum user inputs.


Excitation-emission matrix fluorescence Multifluorophoric mixture Spectral correlation Non-negative factor analysis Partial least square analysis 



  1. 1.
    Rho JH, Stuart JL (1978) Automated three-dimensional plotter for fluorescence measurements. Anal Chem 50:620–625CrossRefGoogle Scholar
  2. 2.
    Freegarde M, Hatchard CG, Parker CA (1971) Oil spilt at sea: its identification, determination, and ultimate fate. Lab Pr 20:35–40Google Scholar
  3. 3.
    Warner IM, Callis JB, Davidson ER, Goutermann M, Christian GD (1975) Fluorescence analysis: a new approach. Anal Lett 8:665–681CrossRefGoogle Scholar
  4. 4.
    Kumar K, TaraiM MAK (2017) Unconventional steady-state fluorescence spectroscopy as an analytical technique for analyses of complex-multifluorophoric mixtures. TrAC Trends Anal Chem 97:216–243CrossRefGoogle Scholar
  5. 5.
    Kumar K, Mishra AK (2013) Analysis of dilute aqueous multifluorophoric mixtures using excitation-emission matrix fluorescence (EEMF) and total synchronous fluorescence (TSF) spectroscopy:a comparative evaluation. Talanta 117:209–220CrossRefGoogle Scholar
  6. 6.
    Patra D, Sireesha LK, Mishra AK (2001) Characterization and investigation of polycyclic aromatic compounds present in petrol, diesel, kerosene and 2T oil using excitation emission matrix fluorescence. Indian J Chem 40:374–379Google Scholar
  7. 7.
    Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M, Koziol J (2004) Characterization of edible oils using total luminescence spectroscopy. J Fluoresc 14:25–35CrossRefGoogle Scholar
  8. 8.
    Sierra MM, Giovanela M, Parlanti E, Soriano-Sierra EJ (2005) Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere 58:715–733CrossRefGoogle Scholar
  9. 9.
    Baker A (2001) Fluorescence excitation - Emission matrix characterization of some sewage-impacted rivers. Environ Sci Technol 35:948–953CrossRefGoogle Scholar
  10. 10.
    Brewer M, Utzinger U, Silva E, Gershenson D, Bast RC, Follen M, Richards-Kortum R (2001) Fluorescence spectroscopy for in vivo characterization of ovarian tissue. Lasers Surg Med 29:128–135CrossRefGoogle Scholar
  11. 11.
    Sterenborg HJCM, Motamedi M, Wagner J, Duvic M, Thomsen S, Jacques SL (1994) In vivo fluorescence spectroscopy and imaging of human skin tumors. Lasers Med Sci 9:191–201CrossRefGoogle Scholar
  12. 12.
    Kumar K, Mishra AK (2012) Application of parallel factor analysis to total synchronous fluorescence spectrum of dilute multifluorophoric solutions: addressing the issue of lack of trilinearity in total synchronous fluorescence data set. Anal Chim Acta 755:37–45CrossRefGoogle Scholar
  13. 13.
    Kumar K, Kumar Mishra A (2015) Parallel factor (PARAFAC) analysis on total synchronous fluorescence spectroscopy (TSFS) data sets in excitation-emission matrix fluorescence (EEMF) layout: certain practical aspects. ChemomIntell Lab Syst 147:121–130CrossRefGoogle Scholar
  14. 14.
    Lee DD, Seung HS (1999) Learning the parts of objects by nonnegative matrix factorization. Nature 401:788–791CrossRefGoogle Scholar
  15. 15.
    Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst:556–562Google Scholar
  16. 16.
    Paatero P, Tapper U (1994) Positive matrix factorization: a non???Negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126CrossRefGoogle Scholar
  17. 17.
    Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst 37:23–35CrossRefGoogle Scholar
  18. 18.
    Devarajan K (2008) Nonnegativematrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol 4:e1000029CrossRefGoogle Scholar
  19. 19.
    Kramer R (1998) Chemometric techniques for quantitative analysis. Marcel Dekker, New YorkCrossRefGoogle Scholar
  20. 20.
    Wold S, Ruhe A, Wold H, Dunn WJ (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci and Stat Comp 5:735–743CrossRefGoogle Scholar
  21. 21.
    Geladi P, Kowalski B (1986) Partial least square regression: a tutorial. Anal Chim Acta 185:1–17CrossRefGoogle Scholar
  22. 22.
    Lorber A, Wangen LE, Kowalski BR (1987) A theoretical foundation for the PLS algorithm. J Chemom 1:19–31CrossRefGoogle Scholar
  23. 23.
    Varmuza K, Filzmoser P (2008) Introduction to multivariate statistical analysis in chemometrics. Taylor & Francis Group, Boca RatonGoogle Scholar
  24. 24.
    Hanselmann M, Kirchner M, Renard BY, Amstalden ER, Glunde K, Heeren RM, Hamprecht FA (2008) Concise representation of mass spectrometry images by probabilistic latent semantic analysis. Anal Chem 80:9649–9658CrossRefGoogle Scholar
  25. 25.
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  26. 26.
    Burnham KP, Anderson DR (2002) Model selection and multimodel inference, a practical-theoretic approach. Springer, New YorkGoogle Scholar
  27. 27.
    Kumar K (2019) Application of Akaike information criterion assisted probabilistic latent semantic analysis on non-trilinear total synchronous fluorescence spectroscopic data sets: automatizing fluorescence based multicomponent mixture analysis. Anal Chim Acta 1062:60–97CrossRefGoogle Scholar
  28. 28.
    Bro R, Rinnan Å, Faber NM (2005) Standard error of prediction for multilinear PLS 2. Practical implementation in fluorescence spectroscopy. Chemom Intell Lab Syst 75:69–76Google Scholar
  29. 29.
    Rinnan Å (2004) Application of PARAFAC on spectral data. Royal Veterinary and Agricultural University-DK, (PhD ThesisGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hochschule Geisenheim UniversityGeisenheimGermany

Personalised recommendations