Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications


Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5–20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as −7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Yuan F, Li S, Fan Z, Meng X, Fan L, Yang S (2016) Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today 11:565–586

    CAS  Article  Google Scholar 

  2. 2.

    Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca M, S-Y X (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    CAS  Article  Google Scholar 

  3. 3.

    Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem A 22:24230–24253

    CAS  Article  Google Scholar 

  4. 4.

    Wang D, Wang X, Guo Y, Liu W, Qin W (2014a) Luminescent properties of milk carbon dots and their Sulphur and nitrogen doped analogues. RSC Adv 4:51658–51665

    CAS  Article  Google Scholar 

  5. 5.

    Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic Dirac billiard in graphene quantum dots. Science 320:356–358

    CAS  Article  Google Scholar 

  6. 6.

    Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J (2016) Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104:169–178

    CAS  Article  Google Scholar 

  7. 7.

    Li X, Lau SP, Tang L, Jic R, Yang P (2014) Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale 6:5323–5328

    CAS  Article  Google Scholar 

  8. 8.

    Xue M, Zhang L, Zou M, Lan C, Zhan Z, Zhao S (2015) Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensors Actuators B Chem 219:50–56

    CAS  Article  Google Scholar 

  9. 9.

    Dong Y, Cai J, You X, Chi Y (2015) Sensing applications of luminescent carbon based dots. Analyst 140:7468–7486

    CAS  Article  Google Scholar 

  10. 10.

    Dong Y, Li G, Zhou N, Wang R, Chi Y, Chen G (2012) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84:8378–8382

    CAS  Article  Google Scholar 

  11. 11.

    Zhang L, Zhang Z-Y, Liang R-P, Li Y-H, Qiu J-D (2014a) Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal Chem 86:4423–4430

    CAS  Article  Google Scholar 

  12. 12.

    Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47:20–30

    CAS  Article  Google Scholar 

  13. 13.

    Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 38:20–27

    CAS  Article  Google Scholar 

  14. 14.

    Cheng L, Li Y, Zhai X, Xu B, Cao Z, Liu W (2014) Polycation-b-Polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging. ACS Appl Mater Interfaces 6:20487–20497

    CAS  Article  Google Scholar 

  15. 15.

    Fernando KAS, Sahu S, Liu Y, Lewis WK, Guliants EA, Jafariyan A, Wang P, Bunker CE, Sun YP (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7:8363–8376

    CAS  Article  Google Scholar 

  16. 16.

    Liu Q, Zhang S, Dai L, Li LS (2012) Nitrogen-doped colloidal graphene quantum dots and their size dependent Electrocatalytic activity for the oxygen reduction reaction. J Am Chem Soc 134:18932–18935

    Article  Google Scholar 

  17. 17.

    Sagbas S, Sahiner N (2019) Nanocarbon and its composites. In: Khan A, Jawaid M, Inamuddin DR, Asiri AM (eds) Chapter 22: Carbon dots: Preparation, Properties and Application, 1st edn. Elsevier, Woodhead

    Google Scholar 

  18. 18.

    Zhang B-X, Gao H, Li X-L (2014b) Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New J Chem 38:4615–4621

    CAS  Article  Google Scholar 

  19. 19.

    Wang C, Sun D, Zhuo K, Zhang H, Wang J (2014b) Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Adv 4:54060–54065

    CAS  Article  Google Scholar 

  20. 20.

    Wang Z, Xu C, Lu Y, Chen X, Yuan H, Wei G, Ye G, Chen J (2016) Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sensors Actuators B Chem 241:1324–1330

    Article  Google Scholar 

  21. 21.

    Zou S, Hou C, Fa H, Zhang l MY, Dong L, Li D, Huo D, Yang M (2017) An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from l-cysteine. Sensors Actuators B Chem 239:1033–1041

    CAS  Article  Google Scholar 

  22. 22.

    Philippidis A, Stefanakis D, Anglos D, Ghanotakis D (2013) Microwave heating of arginine yields highly fluorescent nanoparticles. J Nanopart Res 15:1414

    Article  Google Scholar 

  23. 23.

    Zeng YW, Ma DK, Wang W, Chen JJ, Zhou L, Zheng YZ, Yub K, Huang SM (2015) N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids. Appl Surf Sci 342:136–143

    CAS  Article  Google Scholar 

  24. 24.

    Karfa P, Roy E, Patra S, Kumar S, Tarafdar A, Madhuri R, Sharma PK (2015) Amino acid derived highly luminescent, heteroatom-doped carbon dots for label-free detection of Cd2+/Fe3+, cell imaging and enhanced antibacterial activity. RSC Adv 5:58141–58153

    CAS  Article  Google Scholar 

  25. 25.

    Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun (34):5118–5120

  26. 26.

    Kudr J, Richtera L, Xhaxhiu K, Hynek D, Heger Z, Zitka O, Adam V (2017) Carbon dots based FRET for the detection of DNA damage. Biosens Bioelectron 92:133–139

    CAS  Article  Google Scholar 

  27. 27.

    Gao F, Ma S, Li J, Dai K, Xiao X, Zhao D, Gong W (2017) Rational design of high quality citric acid-derived carbon dots by selecting efficient chemical structure motifs. Carbon 112:131–141

    CAS  Article  Google Scholar 

  28. 28.

    Liu T, Li N, Dong JX, Zhang Y, Fan YZ, Lin SM, Luo HQ, Li NB (2017) A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens Bioelectron 87:772–778

    CAS  Article  Google Scholar 

  29. 29.

    He G, Shu M, Yang Z, Ma Y, Huang D, Xu S, Wang Y, Hu N, Zhang Y, Xu L (2017) Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots. Appl Surf Sci 422:257–265

    CAS  Article  Google Scholar 

Download references


This work is supported by the Scientific Research Commission of Canakkale Onsekiz Mart University (COMU BAP, TSA-2018-2457).

Author information



Corresponding author

Correspondence to Nurettin Sahiner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahiner, N., Suner, S.S., Sahiner, M. et al. Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications. J Fluoresc 29, 1191–1200 (2019).

Download citation


  • Fluorescence carbon dots
  • Amino acid derived CDs
  • Microwave technique
  • Blood compatibility
  • Antimicrobial CDs